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Abstract

We report on progress made during the second year of this grant. The work performed in the
second year has built upon the work described in last year’s report, and provides the foundation
for the validation and inversion work to be performed in year three.

The main items in year two are

1. The completion of the extension of the Leaf Canopy Model (LCM) to model the full bi-
directional reflection distribution function, and new methodology for solving the radiation
transport equations.

2. The extraction of informative prior distributions over the inputs of the LCM from the
LOPEX database.

3. The completion of the development of the fully-Bayesian inference approach to sensitivity
analysis.

4. The completion of a major review of the retrieval of vegetation canopy biophysical param-
eters from remote sensing data and radiative transfer models.

5. The award of a Outreach Supplement, which will be used to produce a short video for
broadcast on PBS and distribution via YouTube.

Much of this work has been either submitted for publication or is in an advanced stage of
preparation. Preprints are attached to this report.

We conclude with plans for year three, and a list of presentations and publications.

1 Completion of the extension of the LCM to the full BRDF and

new methodology for solving the radiation transport equations

The extension of the LCM to compute the bi-directional reflection distribution function has been
completed. This is an important step towards the goal of model inversion, as it allows the prediction
of data taking into account the time, date and place of measurement (which determines the sun
angles at the area observed), and also the viewing geometry of the satellite. This work is considered
to be an extension of the LCM model, and so has not been submitted for publication independently.
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band; wavelength (nm)

1 2 3 4 5 6 7 8
input 469 555 1240 1640 2130 667 748 870

LAI 0.07 0.03 0.60 0.38 0.15 0.27 0.44 0.66
CHL 0.50 0.71 0.00 0.00 0.00 0.31 0.19 0.00
Water 0.00 0.00 0.01 0.06 0.30 0.00 0.00 0.00
Protein 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.02
Lignin 0.00 0.01 0.08 0.18 0.21 0.00 0.14 0.06

Thickness 0.02 0.02 0.13 0.12 0.03 0.02 0.06 0.11
Soil 0.00 0.00 0.03 0.03 0.01 0.00 0.02 0.04

Sensor azimuth 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sensor zenith 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00
Sun azimuth 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00
Sun zenith 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Total 0.60 0.78 0.86 0.78 0.73 0.62 0.87 0.90

Table 1: Sensitivity Indices for bi-directional extension of LCM; Planophile canopy.

It will be included as part of an upcoming paper describing certain extensions to the statistical
analysis framework that we published last year in the IEEE Transactions on Geoscience and Remote
Sensing.

Work on a new methodology for solving the radiative transport equations for vegetation, the An-
alytical Discrete Ordinate method, has been presented a the International Conference on Transport
Theory, and is currently being prepared for publication.

In figure 1 we show the main effects for the bi-directional extension of the LCM for a planophile
canopy. There are some changes in the shapes of the main effects for the LCM inputs considered
so far (e.g. LAI in band 5 and CHL in band 6), but the relative importance of each input has not
changed. The main effects for the newly considered inputs, the sun and sensor angles, are shown
in the lower panels. Note that these are an order of magnitude smaller than the main effects for
the other inputs, for the planophile case. Table 1 confirms this result, where the sensitivity indices
for the sun and sensor angles are all very small. Note, however, that the total of the sensitivity
indices are now much reduced, indicating that there may be important interaction effects between
the sun and sensor angles and the other inputs.

In figure 2 we show the main effects for an Erectophile canopy. In this case, for some of the
spectral bands the main effects for the sun and sensor angles are of the same order of magnitude
as the main effects for the other inputs. This is confirmed by the sensitivity indices given in table
2, where the sensitivity indices for the angular inputs are now comparable with the others. This
stresses the importance of considering the full bi-directional distribution, and also the importance
of the categorical Leaf Angle Distribution input to reliable inversion.
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Figure 1: Main Effects for bi-directional extension of LCM; Planophile canopy.
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Figure 2: Main Effects for bi-directional extension of LCM; Erectophile canopy.
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band; wavelength (nm)

1 2 3 4 5 6 7 8
input 469 555 1240 1640 2130 667 748 870

LAI 0.06 0.03 0.33 0.14 0.12 0.17 0.18 0.30
CHL 0.59 0.56 0.12 0.00 0.00 0.49 0.07 0.00
Water 0.02 0.00 0.03 0.11 0.17 0.01 0.00 0.00
Protein 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
Lignin 0.00 0.00 0.04 0.08 0.15 0.00 0.03 0.05

Thickness 0.01 0.02 0.21 0.07 0.09 0.01 0.05 0.04
Soil 0.00 0.01 0.08 0.05 0.04 0.01 0.05 0.07

Sensor azimuth 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sensor zenith 0.01 0.07 0.11 0.13 0.09 0.02 0.14 0.09
Sun azimuth 0.00 0.01 0.04 0.02 0.01 0.00 0.07 0.06
Sun zenith 0.00 0.01 0.09 0.17 0.14 0.00 0.13 0.08

Total 0.69 0.71 0.81 0.78 0.79 0.70 0.73 0.70

Table 2: Sensitivity Indices for bi-directional extension of LCM; Erectophile canopy.

2 Extraction of informative prior distributions over the inputs of

the LCM from the LOPEX database

The LOPEX database is a set of measurements of leaves and plants made by scientists at the Joint
Research Center – Institute of Remote Sensing Applications in Italy. Their primary interest was in
the spectroscopic response of the leaves, and indeed, the LOPEX database is dominated by spectral
information. They did also, however, measure a great deal of auxiliary information about the leaves
that they analyzed, some of which provides useful prior information regarding the expected values
of the inputs to the LCM. For example, figure 3 shows the distribution of water fraction for each
of the leaf samples for which this data is available. The variability within each tree type is clearly
visible in the box plots for each sample number. The data can be aggregated to give a distribution
over water fraction for all the trees in the database. Figure 4 shows the prior for water fraction
(in green) and the other inputs for which there is information in the LOPEX database. (Note that
these distributions are rescaled on to a 0-1 range for ease of display.) The LOPEX database can be
seen to provide a great deal of information about some of the inputs to the LCM – the distributions
shown on figure 4 are informative compared with the uniform distributions we assumed up to this
point.

To see the effects of these priors, figures 5 and 6 show the main effects, and tables 3 and 4 show
the sensitivity indices, with and without the LOPEX priors. Consider the sensitivity indices in band
1 for LAI and CHL. The LOPEX priors provide significant information about the distribution of
CHL expected – this causes the sensitivity index for CHL to be significantly reduced (from 0.74
to 0.39), and the sensitivity index for LAI to be significantly increased (from 0.05 to 0.38). A
similar effect is seen in band 5, where the information in the LOPEX prior for the water fraction
has reduced the sensitivity index for water and caused a corresponding increase in the sensitivity
index for LAI. These results imply that the LOPEX priors should greatly aid the process of model
inversion, by reducing the uncertainty on some of the model inputs, allowing the data to more
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Figure 3: The distributions of the water fractions in each leaf type in the LOPEX database.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
priors derived from lopex

 

 
CHL
Water
Protein
Lignin
Thickness

Figure 4: Priors derived from the LOPEX database. Range of each variable is rescaled to 0-1.

6



0 0.5 1
−0.1

0

0.1

0.2

0.3
band 1

0 0.5 1
−0.1

0

0.1

0.2

0.3
band 2

0 0.5 1
−0.2

−0.1

0

0.1

0.2
band 3

0 0.5 1
−0.2

−0.1

0

0.1

0.2
band 4

0 0.5 1
−0.2

−0.1

0

0.1

0.2
band 5

0 0.5 1
−0.1

0

0.1

0.2

0.3
band 6

0 0.5 1
−0.2

−0.1

0

0.1

0.2
band 7

0 0.5 1
−0.3

−0.2

−0.1

0

0.1
band 8

LAI
CHL
Water
Protein
Lignin
Thickness
Soil

Figure 5: Main Effects for Planophile canopy; uniform priors.

tightly constrain the LAI input.

3 Completion of the Development of the fully-Bayesian Approach

to Sensitivity Analysis

As discussed in the IEEE Transactions on Geoscience and Remote Sensing paper that we published
last year, the methodology we are developing is based on a Gaussian Process (GP) approximation
to the LCM. The results to date have used maximum likelihood to estimate the parameters of the
GP. This ignores the uncertainty in these parameters from the finite training data used to estimate
them.

To incorporate this uncertainty, we developed a Markov chain Monte Carlo (MCMC) algorithm
to sample not only from the distribution of the GP parameters, but also from the prediction of the
output of the LCM. Using these samples in a straightforward Monte Carlo estimation framework, we
can estimate all of the expectations needed to compute the main effects and the sensitivity indices.
Taking into account the uncertainty in the GP parameters results in a full distribution over the
main effects and sensitivity indices. Full details of this new statistical methodology are given in the
draft paper “Fully Bayesian inference for Variance-Based Sensitivity Analysis of Radiative Transfer
Models”, included in the appendix, which will be submitted to Technometrics.

In figure 7 we show box plots representing the distributions of the sensitivity indices. In magenta
we show the first-order sensitivity indices (considering each variable alone), and in cyan we show
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Figure 6: Main Effects for Planophile canopy; LOPEX priors
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band; wavelength (nm)

1 2 3 4 5 6 7 8
input 469 555 1240 1640 2130 667 748 870

LAI 0.05 0.02 0.50 0.30 0.01 0.23 0.42 0.53
CHL 0.74 0.80 0.00 0.00 0.00 0.59 0.09 0.00
Water 0.00 0.00 0.01 0.09 0.16 0.00 0.00 0.00
Protein 0.00 0.00 0.01 0.02 0.04 0.00 0.02 0.02
Lignin 0.00 0.00 0.14 0.30 0.54 0.00 0.10 0.13

Thickness 0.04 0.07 0.12 0.04 0.01 0.03 0.24 0.17
Soil 0.00 0.00 0.09 0.06 0.03 0.00 0.04 0.07

Total 0.83 0.89 0.88 0.81 0.79 0.85 0.90 0.91

Table 3: Sensitivity Indices for Planophile canopy; uniform priors.

band; wavelength (nm)

1 2 3 4 5 6 7 8
input 469 555 1240 1640 2130 667 748 870

LAI 0.38 0.44 0.49 0.29 0.09 0.63 0.45 0.55
CHL 0.39 0.32 0.00 0.00 0.00 0.15 0.05 0.00
Water 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Protein 0.00 0.00 0.02 0.04 0.09 0.00 0.03 0.03
Lignin 0.00 0.00 0.09 0.24 0.51 0.00 0.07 0.08

Thickness 0.00 0.04 0.06 0.04 0.02 0.00 0.15 0.09
Soil 0.01 0.01 0.20 0.18 0.07 0.01 0.11 0.15

Total 0.78 0.83 0.86 0.80 0.79 0.80 0.86 0.89

Table 4: Sensitivity indices for Planophile canopy; LOPEX priors

the total sensitivity indices – these include the interactions of the stated variable with all the others.
We see that in general only some of the variables have significant first-order sensitivity indices in a
given band, but that the total sensitivity index can be large, even when the first-order sensitivity
index is close to zero. This confirms and quantifies the importance of the interactions, and also the
requirement for observations in multiple spectral bands when performing inversion.

4 Completion of a major review of the retrieval of vegetation

canopy biophysical parameters from remote sensing data and

radiative transfer models

Also in the appendix we include a copy of the paper “Retrieval of Vegetation Canopy Biophysical
Parameters via Remote Sensing and Radiative Transfer models: An Overview”, which has been
submitted to Measurement Science and Technology as a solicited paper. This provides a major
review of the current state of the art in remote sensing model inversion, and a benchmark against
which to compare our work.
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Figure 7: The distributions of the first-order sensitivity indices (magenta) and the total sensitivity
indices (cyan) of the LCM inputs as estimated by the fully-Bayesian GP emulator.
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5 The award of a Outreach Supplement, which will be used to

produce a short video for broadcast on PBS and distribution

via YouTube

We submitted a proposal to the ROSES 2008 Outreach Supplemental Awards element (NNH08ZDA001N
- OUTREACH), to produce a 5 minute video titled “Living in an Uncertain World”, which will be
broadcast on KCSM, one of the local PBS stations in the San Francisco bay area, and potentially
on other PBS stations nationwide. It will also be made available on YouTube, in both English
and with Spanish subtitles. It will explain, to a lay audience, the main concepts of uncertainty
estimation using examples taken from both everyday life (e.g. the lottery) and the science domain
of the grant (e.g. uncertainty in climate change forecasts). It will explain the different usage of un-
certainty in the two domains, and how accurate uncertainty estimation is vital for accurate decision
making.

The supplemental funding was received in early July, and production of the video is scheduled
to begin in September.

The technical section of the proposal is attached to this report in the Appendix.

6 Plans for Year Three

Work in year three will address the project’s ultimate goal of model inversion to estimate biospheric
parameters from remote sensed data, by completing

• the GP priors for the bias function, which models the discrepancy between the LCM and
reality

• the estimation of the bias function using BIGFOOT and MODIS data, providing validation
of the model

• inversion of the LCM using the validated GP in the likelihood function.

We will also prepare papers and make presentations as appropriate.

7 Presentations and Publications

• “Extending the Statistical Framework for Global Sensitivity Analysis of Canopy Radiative
Transfer Models” A poster presented at the AGU Fall Meeting, San Francisco, 2008.

• “A Bayesian Approach to Probabilistic Sensitivity Analysis for Radiative Transfer Models”,
Presented at the 2009 SIAM Conference on Computational Science and Engineering, Min-
isymposium on Bayesian Formulations for System Identification, Modeling and Prediction,
Miami, FL, March 2009.

• “Fully Bayesian Inference for Variance-Based Sensitivity Analysis of Radiative Transfer Mod-
els”, to be submitted to Technometrics.
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• “Retrieval of Vegetation Canopy Biophysical Parameters via Remote Sensing and Radiative
Transfer models: An Overview”, A solicited paper submitted to Measurement Science and
Technology.

• “On the special features of the photon transport in canopies”, 21st International Conference
of Transport Theory, Torino, Italy, July 12-17, 2009.

• “Bayesian Estimation and Sensitivity Analysis of Radiative Transfer Models”. A talk at the
Mathematical and Computational Biology Seminar Series, UCSC. November, 20, 2008.

• “Bayesian Estimation and Sensitivity Analysis of Radiative Transfer Models”. Poster for
Research Review Day, Baskin School of Engineering, UCSC. October 17, 2008.

• “Bayesian Inference for Global Sensitivity Analysis of Radiative Transfer Models”. Poster for
the School of Engineering Open House, UCSC. March 12, 2009.

A Appendix: Publications, Posters and Proposals

Copies of the publications and posters listed in section 7 are included in this appendix. The
technical section of the supplemental outreach proposal (“Living in an Uncertain World: a video
for public television”) is also included here.
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Fully Bayesian Inference for Variance-Based Sensitivity Analysis

of Radiative Transfer Models

Marian Farah and Athanasios Kottas ∗

Abstract

Sensitivity analysis is a useful tool for quantifying and describing the sensitivity of a computer

model’s output to uncertainty in its inputs. This work is concerned with sensitivity analysis of

Radiative Transfer Models (RTMs), which are used for the prediction of a satellite observation

of a vegetated region. We consider the Leaf-Canopy Model (LCM), a specific RTM, which

takes as input various biospheric and illumination parameters and calculates the upwelling

radiation at the top of the canopy. The influence of each input and how uncertainty in the

output is apportioned amongst the inputs are determined by calculating the “main effects”

and “sensitivity indices” of the LCM inputs. Computing these quantities through Monte

Carlo methods using LCM runs is computationally expensive. Using a Bayesian approach, we

approximate the LCM by a Gaussian process emulator, and efficiently obtain point estimates

of the main effects of the inputs, as well as full posterior distributions of the main effects and

sensitivity indices. These distributions are used to determine inputs that are most influential

with regard to output prediction uncertainty. We apply these methods to LCM data obtained

at 8 wavelengths, which are associated with MODIS (a key instrument aboard the Terra and

Aqua satellites) spectral bands that are sensitive to vegetation.

KEY WORDS: Gaussian process prior; Leaf-Canopy Model; Main effects; Sensitivity indices.
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1 Introduction

Global process models are widely used in geoscience and remote sensing for the estimation

and prediction of the properties of Earth’s coupled dynamical system. Such models are typically

implemented in complex computer programs that require global inputs. We are concerned with

Radiative Transfer Models (RTMs), which simulate light reflected off the surface of the earth

as measured by sensors mounted on orbiting satellites. While RTMs are deterministic models,

i.e., they always produce the same output given the same inputs, there is uncertainty about the

true values of their inputs. The consequences of this uncertainty in the inputs on the computed

output of the RTM is the subject of this paper. We use the Leaf-Canopy Model (LCM) (Ganapol

et al., 1999), which simulates light reflected by vegetation, as a surrogate for the RTM, and study

the sensitivity of the LCM’s output to uncertainty in its inputs. See Section 2 for a discussion

of the LCM.

Sensitivity analysis is an invaluable tool in model development, calibration, and validation.

It is concerned with investigating how uncertainty in the model inputs impacts uncertainty in

the model output. Thus, sensitivity analysis helps identify where a model must be improved,

and where better input information must be obtained. In general, there are two approaches

for sensitivity analysis, local and global. Local sensitivity analysis determines how the output

changes as the inputs are each varied about a fixed point, while global sensitivity analysis

determines how the output changes as all the inputs vary continuously over the entire input space;

see Satelli et al. (2000) for a review of both approaches. The sensitivity of the model output

is measured via the calculation of the “main effects,” which graphically provide a summary of

the influence of each input on the model output, and by the “sensitivity indices,” which are

variance-based measures that give the expected amount by which the uncertainty in the output

would be reduced if the true value of the input was known (Oakley and O’Hagan, 2004).

Calculating the main effects and sensitivity indices requires the evaluation of multidimen-

sional integrals over the input space of the computer model. Typically, evaluating RTMs is com-

putationally expensive, so consequently, standard numerical integration methods (e.g., Monte

Carlo integration or multidimensional quadrature) are infeasible since each model run takes an

appreciable amount of time to complete. We adopt the approach of approximating the RTM
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by a Gaussian Process (GP), a more computationally efficient model, which can be constructed

using a small number of carefully chosen RTM runs; see Section 3. Using the GP approximation

(referred to as the GP emulator) instead of the actual RTM will introduce uncertainty into the

evaluation of the main effects and sensitivity indices, but this uncertainty can be quantified since

the GP is a fully specified statistical model. Using GP emulators for computer model experi-

ments is a standard approach in the statistical literature dating back to the work of Sacks et al.

(1989); see, e.g., the book by Santner et al. (2003). Moreoever, in recent years there has been

an upsurge in research activity based on Bayesian methods, see, e.g., Kennedy and O’Hagan

(2001), Craig et al. (2001), Oakley and O’Hagan (2002), Higdon et al. (2004), Goldstein and

Rougier (2006), Bayarri et al. (2007), Bayarri et al. (2009).

We construct the GP emulator as a prior for the LCM and obtain its posterior distribution;

see Section 3. The analysis is fully Bayesian with predictive inference based on the posterior of all

model parameters, including the GP prior “smoothness” parameters. In Section 4, we use runs

of the GP posterior predictive distribution to obtain full inference for global sensitivity analysis.

We first develop an approach to calculate Bayesian point estimates of the main effects and their

associated uncertainties. Next, we design a method to obtain full posterior distributions of the

main effects and sensitivity indices over the input space of the model. Previous work, such as the

semi-Bayesian approach described in Oakley and O’Hagan (2004) and the likelihood approach

used by Morris et al. (2008), relied on ratios of point estimates to obtain (ad-hoc) estimates of

the sensitivity indices, which are defined through ratios of variances. In Section 5, we present

inference for the main effects and sensitivity indices of the LCM and determine the relative

importance of each input to the LCM output at 8 different MODIS bands. Finally, Section 6

concludes with discussion of possible extensions.

2 Leaf-Canopy Model

The LCM was developed by the Vegetation Modeling Transport Group (University of Ari-

zona), in collaboration with the Ecosystem Science and Technology Branch at NASA Ames

in support of MODIS (or Moderate Resolution Imaging Spectroradiometer), a key instrument

abroad Terra and Aqua satellites. The LCM combines two different radiative transfer algo-
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rithms: LEAFMOD, which simulates the radiative regime inside the single leaf, and CANMOD,

which combines the information coming from LEAFMOD with canopy structural parameters to

compute the radiative regime within and at the top of the canopy. LEAFMOD is calibrated over

the LOPEX leaf species archive, which stores experimentally obtained data of leaf properties

(Osgood et al., 1995). The first module uses LEAFMOD in the forward and inverse mode to

compute the leaf optical properties (i.e., leaf reflectance and transmittance). The second mod-

ule uses the CANMOD forward mode to compute the canopy hemispherical reflectance factor

(Ganapol et al., 1999). Figure 1 shows a flowchart that demonstrates the operation of the LCM.

Canopy-Leaf
Biochemical   

Concentrations

LCM2 MODEL
FLOW CHART

Reference-Leaf
Reflectance & Transmittance

Thickness

LEAFMOD 
Inversion

Leaf Scattering Profile Leaf Absorption Profile

Canopy -Leaf
Reflectance & Transmittance

CANMOD

Canopy Reflectance

LEAFMOD
Forward Mode

Specific 
Absorptivities

Canopy-Leaf Thickness

Soil 
Reflectance

LAI
LAD

LOPEX
Archive

Measurements

Figure 1: LCM Flow Chart

The LCM requires the specification of the input variables, which include leaf chemistry vari-

ables (chlorophyll, water fraction, lignin/cellulose, and protein), leaf thickness, soil reflectance,

canopy architecture (Leaf Area Index (LAI) and Leaf Angle Distribution (LAD)), wavelength,
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and sun angle (Ganapol et al., 1999). LAI is the area of the leaves on a canopy divided by the the

area of the ground covered by the canopy, and so it is a dimensionless quantity. LAD describes

the orientation of the leaves, and it takes 5 discrete values: planophile (leaves mainly horizon-

tal), erectophile (leaves mainly vertical), plagiophile (leaves mainly at 45 degrees, extremophile

(leaves mainly both horizontal and vertical), unophile (leaves are mainly spherical) (Ganapol

et al., 1999). In our analysis, the LAD variable is set to planophile, and the sun angle is set

to zenith. In future work, we will use a hierarchical extension of our model by including the

other LAD variables in the analysis. Table 1 lists the LCM inputs and their ranges, and Table

2 lists the 8 bands (or groups of wavelengths) used by the LCM along with their corresponding

MODIS band numbers.

Input Min Max
LAI 0 8

Chlorophyll (µg/cm2) 0 100
Water fraction 0.1 0.8

Protein (mg/cm2) 0.1 1
Lignin/Cellulose (mg/cm2) 0.1 6

Thickness (cm) 0.001 0.01
Soil reflectance 0.3 1.3

Table 1: Ranges of inputs to the LCM. LAI, water fraction, and soil reflectance parameters are
dimensionless

band number wavelength (nm) MODIS band
1 469 ref3
2 555 ref4
3 1240 ref5
4 1640 ref6
5 2130 ref7
6 667 ref13
7 748 ref15
8 870 ref16

Table 2: Wavelength for each band used and the corresponding MODIS band number. Bands
are in the MODIS band order, not in the wavelength order.

Sensitivity analysis of the LCM identifies inputs that are the main contributors to variability

in the computed observation. Thus, it provides guidance as to where better input information

must be obtain in order to reduce variability in the output. Additionally, identification of im-
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portant inputs gives information as to how well these inputs can be predicted from observations

of the model output at different wavelengths.

3 Gaussian Process Emulator for the LCM

An emulator is a statistical model that is used to approximate a computer model; see Ras-

mussen and Williams (2006), Neal (1998), and Mackay (1998). Given a set of training model

runs D = {(xi, yi = f(xi)) : i = 1, . . . , n}, the emulator treats a process model (such as LCM)

as a black box and uses D to estimate f(·). The advantage of using a GP emulator is that it

is a fully specified statistical model that requires one carefully chosen set of model runs, and

so it is both tractable and efficient. While this approximation introduces uncertainty into the

computation of the main effects and sensitivity indices, this uncertainty is quantifiable.

A GP is a stochastic process over functions. Under a GP prior for function f(·), for any finite

set of input points (v1, . . . , vN ), where vi = (v1i, . . . , vki) for i = 1, . . . , N , the joint probability

distribution of the outputs (f(v1), . . . , f(vN )) is multivariate normal. Furthermore, GP models

typically assume that the output is a smooth function of its inputs, that is, nearby locations in

the input space produce outputs that are stochastically close in value. A GP is fully specified by

its mean function, E (f(v)), and positive definite covariance function, Cov (f(vi), f(vj)). The

flexibility of choosing and adapting the mean and covariance functions allows a GP model to be

used to approximate a wide spectrum of functions.

In our analysis we assume constant mean function, µ(v) = µ, and consider a covariance

function, Cov (f(vi), f(vj)) = τ2Corr (f(vi), f(vj)), which is taken to be isotropic with constant

variance, τ2, and a correlation function that has the product exponential form

Corr (f(vi), f(vj)) = exp

{
−

k∑

`=1

φ`|v`i − v`j |
}

, (1)

where φ = (φ1, . . . , φk), with φ` > 0, is the vector of smoothness parameters of the GP.
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3.1 Building the GP Emulator

To obtain the set of training data, D, for the GP emulator, we use a Latin Hypercube design

(McKay et al., 1979) to generate the design matrix of the seven inputs to the LCM, that is, {LAI,

chlorophyll, water, protein, lignin, thickness, soil reflectance}, and calculate the corresponding

outputs (hemispherical reflectance) using the LCM.

We treat the functional form of the LCM, say f(·), as unknown and develop a prior for it in

the form of a noisy GP. That is, if xi = (x1i, . . . , x7i) is the i–th observed design point from the

input space of the LCM, and yi is the corresponding LCM output, then we model yi = f(xi)

through yi = f̂(xi) + εi. Here, the εi are i.i.d. N(0, J) error terms, and f̂(·) is assigned an

isotropic GP prior with constant mean, µ, constant variance, τ2, and the correlation function in

(1). While the LCM computer code is deterministic, we choose to treat it as stochastic albeit

with a small controlled amount of noise, specified through fixed variance, J . This is a standard

computational strategy in Bayesian analysis of computer model experiments with GP priors,

and it is analogous to including a jitter term in the covariance structure in GP regression to

prevent the correlation matrix from being singular (e.g., Neal, 1998).

Given D, there are n induced variables from the GP for f̂(·), denoted by θi = f̂(xi),

for i = 1, . . . , n, with induced prior θ = (θ1, . . . , θn) ∼ Nn

(
µ1n, τ2Rφ

)
. Here, 1n is the n–

dimensional vector with all elements equal to 1, and Rφ is the observed correlation matrix with

(i, j)–th element given by exp
{
−∑7

`=1 φ`|x`i − x`j |
}

, for i = j = 1, . . . , n.

We place a normal prior on µ, an inverse-gamma prior on τ2, and a Unif(0, bφ`
) prior on

each φ`, ` = 1, 2, . . . , 7, assuming prior independence for all hyperparameters. Details on prior

specification as well as MCMC posterior simulation for the GP model parameters are provided

in Appendix A.

3.2 The Posterior Predictive Distribution of the GP Emulator

Analysis of computer model output performed using runs of the emulator have an additional

measure of uncertainty, since those runs are an approximation of the computer code output.

We account for this uncertainty by performing further analysis over the posterior predictive

distribution of the GP. For any generic input, v = (v1, . . . , v7), we can obtain the posterior
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predictive distribution for ỹ = f(v) through the predictive distribution for θ̃ = f̂(v). Specifically,

p (ỹ|D) =
∫

N
(
ỹ | θ̃, J

)
p

(
θ̃ | D

)
dθ̃ =

∫∫
N

(
ỹ|θ̃, J

)
N

(
θ̃ | m(v), S(v)

)
p (ψ|D) dψdθ̃, (2)

where ψ = (θ, µ, τ2, φ), and

m(v) ≡ E
(
θ̃|ψ

)
= µ + rT (v)R−1

φ (θ − µ1n) , (3)

S(v) ≡ V ar
(
θ̃|ψ

)
= τ2

(
1− rT (v) R−1

φ r(v)
)

, (4)

where r(v) is the n× 1 vector with i–th element given by exp
(
−∑7

`=1 φ`|v` − x`i|
)
.

The joint predictive distribution for (θ̃, θ̃′) = (f̂(v), f̂(v′)) corresponding to generic inputs

v = (v1, v2, . . . , v7) and v′ = (v′1, v
′
2, . . . , v

′
7) is given by p(θ̃, θ̃′ | D) =

∫
p(θ̃, θ̃′ | ψ)p(ψ | D) dψ,

where p(θ̃, θ̃′ | ψ) is bivariate normal with (2× 1) mean vector

ω(v,v′) = µ12 + RT
(
v, v′)R−1

φ (θ − µ1n) , (5)

and (2× 2) covariance matrix

C(v, v′) = τ2
(
B

(
v, v′)−RT

(
v, v′)R−1

φ R
(
v, v′)) , (6)

where B (v, v′) is the (2× 2) observed correlation matrix for for (f̂(v), f̂(v′)) with off diagonal

elements given by exp
(
−∑7

`=1 φ`|v` − v′`|
)
, and R (v, v′) is the (n × 2) matrix with first col-

umn elements exp
(
−∑7

`=1 φ`|v` − x`i|
)
, i = 1, 2, . . . , n, and analogously for the second column

elements replacing v` with v′`.

The joint predictive distribution for (ỹ, ỹ′) = (f(v), f(v′)) is given by

p(ỹ, ỹ′ | D) =
∫∫

p(ỹ, ỹ′ | θ̃, θ̃′)p(θ̃, θ̃′ | ψ)p(ψ | D) dψdθ̃dθ̃′,

where p(ỹ, ỹ′ | θ̃, θ̃′) is bivariate normal with mean (θ̃, θ̃′) and covariance matrix JI2.
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4 Sensitivity Analysis

4.1 Main Effects and Sensitivity Indices

The key idea behind variance-based approaches to sensitivity analysis is to decompose the

function y = f(v) into summands of increasing dimensionality Sobol (1993). Specifically, given

a k dimensional input space,

y = f (v) = f0 +
k∑

i=1

fi(vi) +
∑

1≤i<j≤k

fi,j (vi, vj) + · · ·+ f1,2,...,k (v1, . . . , vk) .

Here, f0 is the global mean given by

f0 = E (Y ) =
∫

v
f (v) dH (v) ,

where H (v) =
∏k

`=1 H`(v`) is the uncertainty distribution of the inputs comprising independent

components H`(v`). For the LCM model, we assume independent uniform distributions over the

ranges given in Table 1 for each input variable.

The next k terms are the main effects, where fi(vi) is the main effect of input vi, providing

a measure of the influence of input vi on the computed output. For i = 1, . . . , k, we have, in

general,

fi(vi) = E (Y |vi)− E (Y ) =
∫

v−i

f (v) dH (v−i|vi)− E (Y ) ,

where v−i denotes all elements of v except vi. Because of the independent components of the

uncertainty distribution, the conditional distribution H (v−i|vi) simplifies to H (v−i).

The later terms of the decomposition are the interactions, which quantify the combined

influence on the computed output of two or more inputs taken together. For instance, the

first-order interactions, fi,j(vi, vj) = E(Y |vi, vj)− fi(vi)− fj(vj)− E(Y ).

Sobol (1993) shows that based on this output decomposition, and assuming independence

between the input variables in the uncertainty distribution, the total variance, Var(Y ) = W ,
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can also be decomposed as the sum of partial variances,

W =
k∑

i=1

Wi +
∑

1≤i<j≤k

Wi,j + · · ·+ W1,2,...,k, (7)

where Wi = Var (fi(vi)) = Var{E(Y |vi)}, Wi,j = Var (fi,j(vi, vj)) = Var{E(Y |vi, vj)}−Wi−Wj ,

and analogously for the higher order terms. Hence, the sensitivity indices, are given by

Si =
Wi

W
, Si,j =

Wi,j

W
, . . . , S1,2,...,k =

W1,2,...,k

W
,

where Si is called the first-order sensitivity index for input vi, which measures the fractional

contribution of vi to the variance of f(v), Sij , for i 6= j, is called the second-order sensitivity

index, which measures the contribution of interaction due to vi and vj on the variance of f(v),

and so on. The decomposition in (7) standardizes the sensitivity indices, that is,

k∑

i=1

Si +
∑

1≤i<j≤k

Si,j + · · ·+ S1,2,...,k = 1

Introduced by Homma and Satelli (1996), the total sensitivity index, ST
i , is a further related

measure, defined by the sum of all the sensitivity indices involving input vi. Specifically,

ST
i = 1− W−i

W
, i = 1, . . . , k,

where W−i = Var {E(Y |v−i)} is the total contribution to the variance of f(v) due to all inputs

except vi.

Note that since we are approximating the function y = f (v) by a GP model, we must

account for this approximation by computing E∗ {E (Y ) |D}, E∗ {E (Y |vi) |D}, E∗{Sj |D}, and

E∗{ST
j |D}, where E∗ {·|D} indicates the expectations with respect to the GP posterior predic-

tive distribution, p(ỹ|D), developed in Section 3.2.

4.2 Bayesian Point Estimates and Uncertainty Bands for The Main Effects

Let v = (v1, . . . , v7) be generic input of the GP emulator. Then, the distribution of the

predicted emulator output, ỹ = f(v), is given by (2).

10



Assuming independent components in the uncertainty distribution for the inputs, the global

mean is given by

E (Y ) =
∫

v
f (v)

7∏

`=1

dH` (v`) .

Using (2) and (3), we obtain

E∗ {E (Y ) |D} =
∫

f(v)
E (Y ) p (f(v) | D) df(v) =

∫

ψ

{
µ + T T R−1

φ (θ − µ1n)
}

p (ψ | D) dψ,

where T is the n× 1 vector with i-th element given by

7∏

`=1

{∫ 1

0
exp (−φ`|v` − x`i|) dv`

}
=

7∏

`=1

{
2− e−φ`x`i − e−φ`(1−x`i)

φ`

}
.

For each specified value uj of the j-th input, we have

E (Y |uj) =
∫

{v`:` 6=j}
f (v1, . . . , uj , . . . , v7)

∏

{`:` 6=j}
dH`(v`)

Again, using (2) and (3), we obtain

E∗ {E (Y |uj) |D} =
∫

f(v1,...,uj ,...,v7)
E (y|uj) p (f(v1, . . . , uj , . . . , v7)|D) df (v1, . . . , uj , . . . , v7)

=
∫

ψ

{
µ + T T

j (uj)R−1
φ (θ − µ1n)

}
p (ψ|D) dψ,

where Tj(uj) is the n× 1 vector with i-the element given by

exp (−φj |uj − xji|)×
∏

6̀=j

{∫ 1

0
exp (−φ`|v` − x`i|) dv`

}
.

For a measure of posterior predictive uncertainty associated with the estimate of the main

effects, we use

V ar∗ {E (Y |uj) |D} = E∗
{

(E (Y |uj))
2 |D

}
− (E∗ {E (Y |uj) |D})2

11



Because we already have the expression for E∗ {E (Y |uj) |D}, what is needed is an expression

for E∗
{

(E (Y |uj))
2 |D

}
. Let vj ≡ (v1, . . . , uj , . . . , v7) and v′

j ≡ (v′1, . . . , uj , . . . , v
′
7). Then,

extending the arguments in the derivation of E∗ {E (Y ) |D} and E∗ {E (Y |uj) |D}, we obtain

E∗
{

(E (Y |uj))
2 |D

}
=

∫
(E (Y |uj))

2 p
(
f(vj), f(v′j) | D

)
df(vj)df(v′j)

=
∫

ψ

{
τ2

(
e− T T

j (uj)R−1
φ Tj(uj)

)
+

(
µ + T T

j (uj)R−1
φ (θ − µ1n)

)2
}

p (ψ|D) dψ,

where

e =
∏

{`:l 6=j}

{∫ 1

0

∫ 1

0
exp

(−φ`|v` − v′`|
)
dv`dv′`

}
=

∏

{`:` 6=j}

2
φ2

j

(
e−φj + φj − 1

)

For detailed derivations of E∗ {E (Y ) |D}, E∗ {E (Y |uj) |D}, and E∗
{

(E (Y |uj))
2 |D

}
, see Ap-

pendix B. It should be noted that Morris et al. (2008) use the expressions we have in the

integrands of all three derived expressions as maximum likelihood estimates by plugging in

maximum likelihood estimators of the GP parameters. The difference here is that we use a

Bayesian GP, which takes into account the uncertainty distributions of its parameters. Also,

Oakley and O’Hagan (2004) derive similar expressions for the main effects and their associ-

ated uncertainty using a GP emulator. However, they use point estimates of the smoothness

parameters, while we obtain full posterior distributions for them.

4.3 A Fully-Bayesian Approach to Inference for the Main Effects and Sensi-

tivity Indices

We obtain posterior distributions for the main effects and sensitivity indices by computing

the values of E(Y ), Var(Y ), E(Y |uj), and E
(
(E (Y |uj))

2
)

at every MCMC state of the GP

emulator using Monte Carlo methods reviewed in Satelli (2002). Here, we briefly discuss how we

calculate these expressions. Letting {v = (v1, . . . , v7), y = f(v)} be a generic run of the LCM,

12



the expectation and variance of y are given by

E (Y ) =
∫∫

· · ·
∫

f (v1, v2, . . . , v7)
7∏

`=1

p`(v`)dv`.

Var (Y ) =
∫∫

· · ·
∫

(f (v1, v2, . . . , v7)− E (Y ))2
7∏

`=1

p`(v`)dv`

=
∫∫

· · ·
∫ (

f2 (v1, v2, . . . , v7)
) 7∏

`=1

p`(v`)dv` − (E(Y ))2 .

For a generic value uj of the j–th input, we have

E (Y |uj) =
∫∫

· · ·
∫

f (v1, . . . , uj , . . . , v7)
7∏

`=1
` 6=j

p`(v`)dv`.

Squaring this expression, then taking its expectation, we obtain

E
(
(E (Y |uj))

2
)

=
∫ { ∫∫

· · ·
∫

f (v1, . . . , uj , . . . , v7)
7∏

`=1
` 6=j

p`(v`)dv`

}2

pj(uj)duj

=
∫∫

· · ·
∫

f (v1, . . . , uj , . . . , v7) f
(
v′1, . . . , uj , . . . , v

′
7

)

×
7∏

`=1

p`(v`)dv`

7∏

`=16̀=j

p`(v′`)dv′`.

Letting u−j = (u1, . . . , uj−1, uj+1, . . . , u7). Then,

E (Y |u−j) =
∫

f (vj , u−j) pj(vj)dvj ,

13



and

E
(
(E (Y |u−j))

2
)

=
∫
· · ·

∫ {∫
f (vj ,u−j) pj(vj)dvj

}2 7∏

`=1
` 6=j

p`(u`)du`

=
∫∫

· · ·
∫

f (vj ,u−j) f
(
v′j , u−j

)
pj(vj)dvjpj(v′j)dv′j

7∏

`=1
` 6=j

p`(u`)du`

=
∫∫

· · ·
∫

f (vj ,u−j) f
(
v′j , u−j

)
pj(v′j)dv′j

7∏

`=1

p`(u`)du`.

Thus, at each MCMC state, t, of the GP emulator, the main effect, fj , the first-order

sensitivity index, Sj , and the total sensitivity index, ST
j are calculated as follows:

f
(t)
j = E (Y |uj)

(t) − E (Y )(t) (8)

S
(t)
j =

Var (E(Y |uj))
(t)

Var(Y )(t)
=

E
(
E2(Y |uj)

)(t) − E2(Y )(t)

Var(Y )(t)
(9)

ST
j

(t)
=

Var(Y )(t) −Var
(
E(Y |u−j)(t)

)

Var(Y )(t)
= 1− E

(
E2(Y |u−j)

)(t) −E2(Y )(t)

Var(Y )(t)
(10)

While a fresh set of data is required for computing (8), (9), and (10), these are cheap emulator

runs, which are enormously faster than those obtained using the LCM code. See Appendix C

for technical implementation.

Thus, we are able to estimate the entire distributions of the the main effects and sensitivity

indices of the LCM inputs under the GP approximation, allowing for the uncertainty in the

main effects and sensitivity indices to be accurately quantified. In previous work, Oakley and

O’Hagan (2004) approximated E∗(Sj) using the ratio of E∗ {Var (E(Y |uj))} and E∗ {Var(Y ))}.
Also, Morris et al. (2008) estimated Sj using a similar ratio based on expectations of the variances

that define Sj with respect to the GP predictive distribution, with GP parameters estimated by

their maximum likelihood estimates.

5 Results

We apply the Bayesian approach to the GP emulator (Section 3) using a training set of

250 model runs based on a Latin Hypercube design at each band (see Table 2). The LAD
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Figure 2: Bayesian point estimates ±2 standard deviations for the main effects. The heavy
smooth lines indicate the point estimates, and the shaded regions around them indicate the
associated ±2 standard deviations region.

variable is set to planophile (leaves mostly horizontal), and the sun angle is set to zenith. Based

on posterior GP emulator runs, we obtain point estimates and uncertainty bands of the main

effects as well as full posterior distributions of the main effects and sensitivity indices of the

LCM inputs, as described in Section 4.

Figure 2 shows plots of the main effects for the 7 normalized input variables and their

uncertainty intervals for each of the 8 MODIS bands. Normalizing the inputs allows all the

main effects to be plotted together on the same plot. The larger the variation of the main effect

plot, the greater the influence of that input on the LCM output. The slope of each main effect

plot gives information as to whether the output is an increasing or decreasing function of that

input.
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Figure 3: Medians and 95% probability bands of the posterior distributions of main effects.
The heavy smooth lines indicate the medians, and the shaded regions around them indicate the
associated 95% probability bands.

For visible spectrum (bands 1, 2, & 6), the LCM is most sensitive to chlorophyll, with LAI

becoming important for red light (band 6), and an increase in Chlorophyll produces a decrease

in the LCM output. For near infra-red (bands 3, 7, & 8), the LCM is most sensitive to LAI,

lignin, and thickness, and an increase in LAI or thickness produces an increase in the LCM

output, while an increase in lignin produces a decrease in the LCM output. Finally, for short

infra-rad bands (bands 4 & 5), the chlorophyll effect is completely diminished, while LAI and

lignin continue to dominate, and water becoming more influential. In general, we observe that

all dominant inputs have nonlinear main effects. These results are consistent with the results

obtained by Morris et al. (2008). However, our estimated uncertainty bands are wider than the

confidence intervals obtained by Morris et al. (2008), which can be explained by the fact that
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Figure 4: The distributions of the first-order sensitivity indices (in magenta) and the total
sensitivity indices (in cyan) of the LCM inputs as estimated by the GP emulator.
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we are also accounting for uncertainty in the GP parameters.

Figure 3 shows plots of the main effects, obtained using the fully-Bayesian approach, where

posterior distributions instead of point estimates are obtained for the 7 normalized input vari-

ables at each of the 8 bands. The means of the distributions of the main effects agree with

the point estimates in figure 1, and the influential inputs obtained using point estimates are

the same as those obtained through the fully-Bayesian approach. However, we observe that the

uncertainty bands become less symmetric around the means in the fully-Bayesian approach for

dominant inputs near the boundary of the grid.

Figure 4 shows boxplots of the first-order sensitivity indices and the total sensitivity indices.

These plots show that inputs with influential main effects are also major contributors to the

variation in the LCM (i.e., they have large sensitivity indices). Additionally, we observe that

many inputs with negligible (nearly zero) first order sensitivity indices had non-negligible total

sensitivity indices. Specifically, for all bands, the total effect index of every input has over 95%

probability of being greater than 0.10. A substantial difference between Sj and ST
j of the j–th

input indicates an important role of interaction terms involving that input on the variation in

the output. Thus, we find that interaction terms involving all LCM inputs are influential at all

8 MODIS bands, and so the dimension of the LCM input is irreducible.

6 Conclusion and Future Work

We have implemented a Bayesian approach, via MCMC methods for the GP emulator, to obtain

point estimates for all the main effects as well as posterior distributions of the main effects and

sensitivity indices associated with the 7 LCM inputs at 8 different MODIS wavelengths. Our

analysis enabled the identification of influential first-order effects of the inputs to the LCM

and revealed that interaction terms are also important in controlling the variation of the LCM

output. We plan to explore some of the second-order sensitivity indices for inputs that had

important first-order sensitivity indices.

Additionally, it will be of interest to study the variable selection approach from Linkletter

et al. (2006) in the context of sensitivity analysis. Linkletter et al. (2006) use Bayesian variable
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selection for the GP correlation parameters to make screening decisions in order to reduce the

input space by identifying “active” inputs. Moreover, a different direction for extending the work

for the LCM model involves development of a more general GP emulator to account for all 4

LAD classifications, using a hierarchical GP formulation for the corresponding output functions

fj(v), for j = 1, 2, 3, 4.
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APPENDIX A

Posterior inference for the GP emulator

We assume prior independence of all hyperparameters and place a N(aµ, bµ) prior on µ, an

Γ−1(aτ , bτ ) prior on τ2, and Unif(0, bφ`
) priors on φ`, ` = 1, 2, . . . , 7, where bµ, aτ , bτ , and bφ`

∈ R+, and aµ ∈ R. Here, Γ−1(a, b) denotes the inverse-gamma distribution with mean b
a−1 ,

provided a > 1.

Let φ = (φ1, . . . , φ7), and Rφ = Corr (f(x), f(x′)) = exp
{
−∑7

`=1 φ`|x` − x′`|
}

.

Then, the joint posterior distribution of all parameters is:

p(θ, µ, τ2, φ|D) ∝
(

n∏

i=1

N(yi|θi, J)

)
×Nn

(
θ|µ1n, τ2Rφ

)
p(µ)p(τ2)p(φ)

This form results in complete conditional posterior distributions that are easy to sample from

for all parameters other than the φ`. In particular, θ|µ, τ2, φ, D ∼ Nn(Mn,Σn) where Σn =(
In
J +

R−1
φ

τ2

)−1

and Mn = Σn

(
y
J +

µR−1
φ 1n

τ2

)
. Moreover, the posterior full conditional for µ is

normal with variance s =
(

1T
n R−1

φ 1n

τ2 + 1
bµ

)−1

, and mean s

(
1T

n R−1
φ θ

τ2 + aµ

bµ

)
For τ2, the posterior

full conditional is Γ−1(A, B), with A = aτ + n
2 and B = 1

2 (θ − µ1n)T R−1
φ (θ − µ1n) + bτ .

Finally, for each φ`, ` = 1, . . . , 7,

p(φ`|θ, µ, τ2, φ−`, D) ∝ |Rφ|−
1
2 exp

(
− 1

2τ2
(θ − µ1n)T R−1

φ (θ − µ1n)
)
× 1(0,bφ`

)(φ`)

In the MH step for each φ`, we draw φ∗` from a right-truncated exponential proposal distribution

with pdf

q(φ∗`) =
d` exp(−d`φ`)

1− exp(−d`bφ`
)
, (11)

so the rate parameter d` is the only tuning parameter. One way to choose the parameter d`

in the proposal distribution is to let φ̃` be an estimate (the MLE or another rough estimate)

of φ`. Set φ̃` equal to the median of (11), and solve for d`. In this case, d` is the solution to

1 + e−d`bφ` − 2e−d`φ` = 0.
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Prior Specification

We set aτ = 2, a value that yields infinite variance for the corresponding inverse-gamma prior

(i.e. a relatively noninformative specification).

To specify the hyperparameters bµ and bτ , note that for each i,

E(Yi) = E (E (E (Yi|θi) |µ)) = E (E (θi|µ)) = E(µ) = aµ

V ar(Yi) = E (V ar (Yi|θi, J)) + V ar (E (Yi|θi, J)) = J + bτ + bµ ≈ bτ + bµ

Now, assume we have a prior guess for the center, cy, and range, ry, of the response values.

Availability of such information seems realistic in our application. Then, we set

aµ = cy and bτ = bµ ≈
(
ry/4

)2

using 2
(
ry/4

)2 ≈ bτ + bµ, with the extra inflation factor 2, and splitting the variance estimate

equally between bτ and bµ.

Specifying prior information for φ`, ` = 1, 2, . . . , 7 is more difficult. One way to specify bφ`
=

2E(φ`) is based on the interpretation of φ`: for any fixed α`, it controls how fast the correlation

decays with distance. In particular, for α` = 1, 3/φ` is the “range of dependence”, i.e. the value

of the distance d = |x − x′| that yields Corr
(
y, y′

)
= 0.05. Hence, we could use, say, 1

10 dmax,

where dmax = max|x` − x′`|, as a rough guess at 3/φ` and specify bφ`
from 1

10 dmax = 3
bφ`

. The

factor 1
10 is arbitrary to some extent. In practice, numerical problems can arise in the MCMC

implementation (in matrix inversions) for small generated values of φ`. If that turns out to be

the case, we can increase bφ`
(and hence decrease the prior probability for small values of φ`) by

using a smaller factor.
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APPENDIX B

Here, we provide the details for derivations of expressions for E∗ {E (Y ) |D}, E∗ {E (Y |uj) |D},
and E∗

{
(E (Y |uj))

2 |D
}

.

E∗ {E (Y ) |D} =
∫

f(v)
E (Y ) p (f(v)|D) df(v)

=
∫

f(v)
E (Y )

{∫

ψ

∫

θ̃
N

(
f(v)|θ̃, J

)
N

(
θ̃|m(v), S(v)

)
p (ψ|D) dθ̃dψ

}
df(v)

=
∫

ψ

∫

θ̃

{∫

f(v)
E (Y ) N

(
f(v)|θ̃, J

)
df(v)

}
N

(
θ̃|m(v), S(v)

)
p (ψ|D) dθ̃ dψ

=
∫

ψ

∫

θ̃

{∫

f(v)

{∫

v
f (v) dH (v)

}
N

(
f(v)|θ̃, J

)
df(v)

}
N

(
θ̃|m(v), S(v)

)
p (ψ|D) dθ̃ dψ

=
∫

ψ

∫

θ̃

{∫

v

{∫

f(v)
f (v) N

(
f(v)|θ̃, J

)
df(v)

}
dH (v)

}
N

(
θ̃|m(v), S(v)

)
p (ψ|D) dθ̃ dψ

=
∫

ψ

∫

θ̃

{∫

v
θ̃ dH (v)

}
N

(
θ̃|m(v), S(v)

)
p (ψ|D) dθ̃ dψ

=
∫

ψ

{∫

v
m(v)

7∏

`=1

dH` (v`)

}
p (ψ|D) dψ

=
∫

ψ

{∫

v

{
µ + rT (v)R−1

φ (θ − µ1n)
} 7∏

`=1

dH` (v`)

}
p (ψ|D) dψ

=
∫

ψ

{
µ + T T R−1

φ (θ − µ1n)
}

p (ψ|D) dψ,

where T is the n× 1 vector with i-th element given by

7∏

`=1

{∫ 1

0
exp (−φ`|v` − x`i|) dv`

}
=

7∏

`=1

{
2− e−φ`x`i − e−φ`(1−x`i)

φ`

}

For each specified value uj of the j-th input, we have

E (Y |uj) =
∫

{v`:` 6=j}
f (v1, . . . , uj , . . . , v7)

∏

{`:` 6=j}
dH`(v`)
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Let vj ≡ f(v1, . . . , uj , . . . , v7), then

E∗ {E (Y |uj) |D} =
∫

f(vj)
E (Y |uj) p (f(vj)|D) df(vj)

=
∫

f(vj)
E (Y |uj)

{∫

ψ

∫

θ̃
N

(
f(vj)|θ̃, J

)
N

(
θ̃|m(vj), S(vj)

)
p (ψ|D) dθ̃ dψ

}
df(vj)

=
∫

ψ

∫

θ̃

{∫

f(vj)
E (Y |uj) N

(
f(vj)|θ̃, J

)
df(vj)

}
N

(
θ̃|m(vj), S(vj)

)
p (ψ|D) dθ̃ dψ

=
∫

ψ

∫

θ̃

{∫

f(vj)

{∫

v
f (vj) dH (v)

}
N

(
f(vj)|θ̃, J

)
df(vj)

}

×N
(
θ̃|m(vj), S(vj)

)
p (ψ|D) dθ̃ dψ

=
∫

ψ

∫

θ̃

{∫

v

{∫

f(vj)
f (vj) N

(
f(vj)|θ̃, J

)
df(vj)

}
dH (v)

}

×N
(
θ̃|m(vj), S(vj)

)
p (ψ|D) dθ̃ dψ

=
∫

ψ

∫

θ̃

{∫

v
θ̃ dH (v)

}
N

(
θ̃|m(vj), S(vj)

)
p (ψ|D) dθ̃ dψ

=
∫

ψ





∫

{v`:l 6=j}
m(vj)

∏

{`:` 6=j}
dH` (v`)



 p (ψ|D) dψ

=
∫

ψ

{
µ + T T

j (uj)R−1
φ (θ − µ1n)

}
p (ψ|D) dψ,

where Tj(uj) is the n× 1 vector with i-th element given by

exp (−φj |uj − xji|)×
∏

6̀=j

{∫ 1

0
exp (−φ`|v` − x`i|) dv`

}
.

Denote vj ≡ (v1, . . . , uj , . . . , v7) and v′
j ≡ (v′1, . . . , uj , . . . , v

′
7). Then,

(E (Y |uj))
2 =




∫

{v`:l 6=j}
f (vj)

∏

{`:` 6=j}
dH`(v`)




2

=
∫∫

{v`:l 6=j}
{v′`:l 6=j}

f(vj)f(v′
j)×

∏

{`:` 6=j}
dH`(v`)

∏

{`:` 6=j}
dH`(v′`)
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and therefore taking expectation with respect to the bivariate posterior predictive distribution

for (f(vj), f(v′
j)), developed in Section 3.2, we obtain

E∗
{

(E (Y |uj))
2 | D

}
=

∫
(E (Y |uj))

2 p(f(vj), f(v′
j) | D)df(vj)df(v′

j)

=
∫

(E (Y |uj))
2

{∫

ψ

∫

(θ̃,θ̃′)
N2

(
f(vj), f(v′

j) | (θ̃, θ̃′), JI2

)

N2

(
θ̃, θ̃′ | ω(vj ,v

′
j), C(vj ,v

′
j)

)
p(ψ | D)dθ̃dθ̃′ dψ

}
df(vj)df(v′

j)

=
∫

ψ

∫

(θ̃,θ̃′)

{∫ 



∫∫
{v`:l 6=j}
{v′`:l 6=j}

f (vj) f
(
v′

j

)×
∏

{`:` 6=j}
dH`(v`)

∏

{`:` 6=j}
dH`(v′`)





N2

(
f(vj), f(v′

j) | (θ̃, θ̃′), JI2

)
df(vj)df(v′

j)

}

N2

(
θ̃, θ̃′ | ω(vj ,v

′
j), C(vj , v

′
j)

)
p (ψ | D) dθ̃dθ̃′ dψ

=
∫

ψ

∫

(θ̃,θ̃′)

{∫∫
{v`:l 6=j}
{v′`:l 6=j}

{∫
f (vj) f

(
v′

j

)
N2

(
f(vj), f(v′

j) | (θ̃, θ̃′), JI2

)
df(vj)df(v′

j)
}

×
∏

{`:` 6=j}

∏

{`:` 6=j}
dH`(v`)dH`(v′`)

}
N2

(
θ̃, θ̃′ | ω(vj , v

′
j), C(vj , v

′
j)

)
p (ψ | D) dθ̃dθ̃′ dψ

=
∫

ψ

∫

(θ̃,θ̃′)





∫∫
{v`:l 6=j}
{v′`:l 6=j}

θ̃ θ̃′
∏

{`:` 6=j}
dH`(v`)

∏

{`:` 6=j}
dH`(v′`)





N2

(
θ̃, θ̃′ | ω(vj ,v

′
j), C(vj ,v

′
j)

)
p (ψ | D) dθ̃dθ̃′ dψ

=
∫

ψ





∫∫
{v`:l 6=j}
{v′`:l 6=j}

Ẽ
(
θ̃ θ̃′ | ψ

)
×

∏

{`:` 6=j}
dH`(v`)

∏

{`: 6̀=j}
dH`(v′`)



 p (ψ | D) dψ

(12)

where Ẽ denotes expectation with respect to the bivariate normal N2

(
θ̃, θ̃′ | ω(vj , v

′
j), C(vj , v

′
j)

)
.

Using the standard covariance identity,

Ẽ
(
θ̃ θ̃′ | ψ

)
= ˜Cov

(
θ̃, θ̃′ | ψ

)
+ Ẽ

(
θ̃ | ψ

)
Ẽ

(
θ̃′ | ψ

)
. (13)

Denote R1 ≡ R1 (v1, . . . , uj , . . . , v7) and R2 ≡ R2 (v′1, . . . , uj , . . . , v
′
7) the first and second

columns, respectively, of the (n × 2) matrix R(v, v′) defined in Section 3.2. Note that here

26



the input vectors we are working with, (v1, . . . , uj , . . . , v7) and (v′1, . . . , uj , . . . , v
′
7), have com-

mon element uj . Therefore, R1 is the n× 1 vector with elements

exp


−φj |uj − xij | −

∑

{`:` 6=j}
φ`|v` − xil|


 , i = 1, . . . , n,

and analogously for R2, replacing v` with v′`. Then using (5) and (6), we obtain

Ẽ(θ̃ | ψ) = µ + RT
1 R−1

φ (θ − µ1n) (14)

Ẽ(θ̃′ | ψ) = µ + RT
2 R−1

φ (θ − µ1n) (15)

˜Cov(θ̃, θ̃′ | ψ) = τ2



exp


−

∑

{`: 6̀=j}
φ`|v` − v′`|


−RT

1 R−1
φ R2



 (16)

Substituting (13), (14), (15), and (16), in (12), we obtain for each j = 1, . . . , 7,

E∗
{

(E (Y |uj))
2 |D

}
=

∫

ψ

{
τ2

(
e− T T

j (uj)R−1
φ Tj(uj)

)
+

(
µ + T T

j (uj)R−1
φ (θ − µ1n)

)2
}

p (ψ|D) dψ

where

e =
∏

{`:l 6=j}

{∫ 1

0

∫ 1

0
exp

(−φ`|v` − v′`|
)
dv`dv′`

}
=

∏

{`:` 6=j}

2
φ2

j

(
e−φj + φj − 1

)

APPENDIX C

Here, we provide the details for generating the distributions of the main effects and sensitivity

indices.
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We begin by generating input sample matrix M of size B × 7,

M =




v1,1 v1,2 . . . v1,7

v2,1 v2,2 . . . v2,7

...
... . . .

...

vB,1 vB,2 . . . vB,7




where each of its elements is a random sample from Unif(0, 1), or equivalently, each row of M

is a random sample from P (v1, . . . , v7) .

Next, we generate 7 input sample matrices, Nj , for j = 1, . . . , 7, of size B × 7 each,

Nj =




v′1,1 v′1,2 . . . v1,j . . . v′1,7

v′2,1 v′2,2 . . . v2,j . . . v′2,7

...
... . . .

... . . .
...

v′B,1 v′B,2 . . . vB,j . . . v′B,7




where the j–th column of matrix Nj equals the j–th column of matrix M, but the elements of

the other 6 columns are randomly sampled from Unif(0, 1).

Then, we generate 7 input sample matrices, N−j , for j = 1, . . . , 7, of size B × 7 each,

N−j =




v1,1 v1,2 . . . v′1,j . . . v1,7

v2,1 v2,2 . . . v′2,j . . . v2,7

...
... . . .

... . . .
...

vB,1 vB,2 . . . v′B,j . . . vB,7




where the (−j)–th columns of matrix N−j equal the (−j)–th columns of matrix M, but the

elements of the j column are randomly sampled from Unif(0, 1).

Then, we generate vector w = {wk : k = 1, 2, . . . , 50}, where the elements wk are equally spaced

between 0 and 1.
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And finally, we generate 350 matrices M(k)
j such that for every j = 1, . . . , 7, and for every

k = 1, . . . , 50, each element of the j–th column in M is equal to wk.

M(k)
j =




v1,1 v1,2 . . . v1,j = wk . . . v1,7

v2,1 v2,2 . . . v2,j = wk . . . v2,7

...
... . . .

... . . .
...

vB,1 vB,2 . . . vB,j = wk . . . vB,7




Now, we are ready to start the Monte Carlo simulation.

1. Start at current MCMC state, ψ(t) =
(
θ(t), µ(t), τ2(t)

, φ
(t)
1 , φ

(t)
2 , . . . , φ

(t)
7

)
, and compute the

observed correlation matrix, R−1

φ(t) .

(a) For each row i of M , sample ỹi ≡ ỹ
(t)
i according to (2), then compute ỹ2

i .

(b) For each row i of Nj , sample ỹ′i,j according to (2).

(c) For each row i of N−j , sample ỹ′i,−j according to (2).

(d) For each row i of M
(k)
j , sample ỹ

(k)
i,j according to (2).

2. Obtain the t–th posterior sample from P (E(Y )|D) and the t–th posterior sample from

P
(
E(Y 2)|D)

,

E (Y )(t) =
1
B

B∑

i=1

ỹi

E
(
Y 2

)(t) =
1
B

B∑

i=1

ỹ2
i

3. For j = 1, . . . , 7, obtain the t–th posterior sample from P
(
E

(
(E(Y |uj))

2)
)
|D

)
,

E
(
(E(Y |uj))

2
)(t)

=
1

B − 1

B∑

i=1

ỹiỹ
′
i,j
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4. For j = 1, . . . , 7, obtain the t–th posterior sample from P
(
E

(
(E(Y |u−j))

2)
)
|D

)
,

E
(
(E(Y |u−j))

2
)(t)

=
1

B − 1

B∑

i=1

ỹiỹ
′
i,−j

5. For each k = 1, . . . , 50, and for each j = 1, . . . , 7, obtain the t–th posterior sample from

P (E (Y |vj = wk) |D),

E (Y |vj = wk)
(t) =

1
B

B∑

i=1

ỹ
(k)
i,j

6. Obtain S
(t)
j according to (9).

7. Obtain ST
j (t) according to (10).

8. For each k = 1, . . . , 50, and for each j = 1, . . . , 7, obtain f
(t)
j according to (8).
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Abstract13
14

Estimating canopy biophysical parameters from data collected by sensors mounted on-board15
Earth orbiting spacecrafts is one of the fundamental problems in remote sensing. Operational16
retrieval algorithms have been developed to provide the most accurate estimation of Leaf Area17
Index (LAI) and fraction of  Absorbed Photosynthetically Active Radiation (fAPAR) on a global18
scale, since those parameters control the exchange of carbon between atmosphere and vegetated19
surface. In this paper, an overview of the methodology currently used in designing inverse20
algorithms for canopy biophysical parameters retrieval is presented. The most efficient21
algorithms have been devised by inverting canopy Radiative Transfer (RT) models.22
Understanding the physics of the interaction between photons and vegetation is a critical23
component of the overall procedure. Canopy RT theory is discussed first to provide an24
understanding of the origin of the physically-based models that have been employed during the25
estimation process. After discussing some of the major issues arising in model-based inversion26
(e.g. ill-posed nature of the inversion, model sensitivity, optimal sampling), three major inverse27
techniques, i.e. traditional iterative optimization, look-up tables and neural networks, are28
presented. The current state-of-the-art for the practice of developing retrieval algorithms, with29
special emphasis on LAI operational algorithms, is discussed. While traditional iterative30
techniques are useful to illustrate the basics of the inversion, a review of the literature shows that31
neural network algorithms are gaining increasing popularity and seem to provide an ideal32
solution for the canopy biophysical parameters retrieval problem. However, the look-up table33
inversion remains the most intuitive and simple algorithm and it is currently the basis for the34
major operational LAI retrieval algorithm currently available. Validation and intercomparison35
between various satellite-based LAI products and algorithms is reviewed.36
Finally, the operational characteristic of four major satellite sensors (MODIS, MISR,37
VEGETATION and MERIS) commonly used for vegetation monitoring, are discussed to provide38
a link between measurements and retrieval algorithms.39

40
1. Introduction41

42
Vegetation canopy biophysical parameters play an important role in controlling land surface43
processes. Large-scale ecosystem models developed to simulate how the Earth system responds44
to changing in climate and atmospheric composition, require accurate knowledge and45
quantification of canopy structural and biochemical parameters. For example, all process models46



2

capable of simulating the exchange of carbon between atmosphere and vegetated surfaces need1
Leaf Area Index (LAI) and fraction of Absorbed Photosynthetically Active Radiation (fAPAR)2
as state variables (Sellers et. al. 1992).  Clearly, vegetation canopies have a critical impact on3
both global carbon cycle and surface-atmosphere energy exchange. Most importantly, processes4
such as canopy evapotranspiration and photosynthesis can be linked to canopy spectral5
reflectance. The electromagnetic energy reflected by vegetation canopies in any direction and at6
any specified wavelength results from a plethora of complex physiological, biochemical and7
physical processes. It is characterized by morphological spatial and temporal canopy variations.8
Satellite remote sensing provides a unique way to aid in quantifying the required vegetation9
parameters and in monitoring the state of vegetation canopies around the world. Many satellite-10
based remote sensors have been deployed in Earth’s orbit to provide a comprehensive sampling11
of the electromagnetic spectrum reflected by the vegetative surfaces. Since most ecosystem12
models do not use the reflected radiation directly, the collected data must be processed by13
retrieval algorithms designed and implemented to estimate the desired canopy biophysical14
parameters. The design and implementation of retrieval algorithms can be defined as the15
intermediate step necessary to transform the collected radiation into estimated canopy structural16
and biochemical parameters. Generally, two broad classes of methods are available to implement17
the data, i.e. empirical methods and physically-based models.18

19
Empirical methods deliver the desired canopy biophysical variables using semi-empirical20
relationships connecting the variable of interest (e.g. LAI, chlorophyll) to radiometric21
information (Vegetation Indices (VI), see Buermann et. al. 2002). The VI-based approach is22
computationally efficient especially when processing large amounts of data (e.g. the relationship23
between VIs and LAI is generally expressed in analytical form) and can give satisfactory results24
under favorable conditions (Atzberger et. al. 2003). However, they lack portability, i.e. they are25
highly specialized for specific sensors and sites (Gobron et al. 1997). Indeed, since the canopy26
spectral and directional reflectance depends on many parameters and conditions, it is extremely27
hard to find a unique, one-to-one relationship between radiometric information and desired28
canopy biophysical variables that is applicable at any spatial and temporal scale (Currant 1994).29

30
Physically-based, first-principle, models may serve as a basis for extracting vegetation31
parameters. They rely on heavy usage of Radiative Transfer (RT) models (Ganapol et. al. 1999,32
2006) and over the past two decades they lead  the way to the development of more reliable and33
efficient algorithms for canopy biophysical parameters estimation. RT models describe the34
physical processes occurring when photons interact with canopy phytoelements such as leaves,35
stems, barks, as well as soil. They account for the transport of photons within vegetation36
structures both directionally and spectrally. Canopy RT models are able to simulate the37
electromagnetic energy reflected by canopies as a function of their structural (e.g. amount of38
one-sided green leaf area or LAI) and biochemical parameters (e.g. chlorophyll and water39
content). Thus, RT models are flexible tools that enable scientists to exploit the full radiometric40
information collected by remote sensors. However, devising an operational RT model-based41
retrieval algorithm is not a simple process as it requires a model inversion, i.e. given the42
collected radiometric information, the canopy RT model is used to match simulated observations43
with measured observations (Verstraete et. al. 1996).44

45
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This review deals with both canopy radiative transfer models and their inversion. Since retrieval1
algorithms are intimately connected with the inverted RT models, an overview of both the2
radiative transfer modeling process and the inversion techniques are appropriate. We will review3
the fundamentals of both sides of the process, spanning from the physics of the interaction4
between photons and vegetation to the numerical inversion techniques. A review of the state-of-5
the-art in operational algorithms for canopy biophysical parameters estimation with a special6
emphasis on LAI is presented, including implementation, performance analysis and validation.7

8
Our paper is organized as follows. Section 2 presents a brief statement of the fundamental9
problem in remote sensing-- modeling and inversion. Section 3 reviews the basics behind10
radiative transfer in vegetation canopies. Few examples of available one-dimensional and three-11
dimensional canopy RT models commonly used for inversion are then presented. Section 412
reviews the fundamentals of RT model inversion and presents three basic techniques, i.e.13
iterative optimization, look-up- tables and neural networks. A review of the state-of-the-art of14
inversion algorithms, their current implementation, validation and performance is presented with15
special emphasis on operational algorithms for LAI retrieval. Section 5 briefly reviews the16
characteristics of satellite-based sensors commonly employed in observing vegetation canopies.17
Section 6 draws the conclusions.18

19
2. A Fundamental Problem in Remote Sensing: Canopy Biophysical Parameters Retrieval20

21
From remote sensing we infer the physical properties of a body by measuring electromagnetic22
radiation either emitted or reflected from an independent source (Schott 1997). In the case of23
vegetation canopies, their biophysical parameters are causally connected to the radiance24
measured by observing sensors.  Physically-based canopy radiative transfer models (sometimes25
also called canopy reflectance (CR) models) can be used to model the direct relationship between26
radiative state variable and observed measurements. A formal mathematical representation of the27
direct (or “forward”) relationship can be obtained as follows (Combal et. al. 2002):28

29
(1)30

31
Equation (1) is the functional representation of the direct/forward canopy problem where the32
response to passive illumination of a canopy realization defined by N vegetation parameters PV =33
{ PV1, PV2, ……, PVN } ) and M configuration parameters PC = { PC1, PC2 ,…., PCM } (e.g., sun34
illumination, sensor angles, wavelengths), is simulated via a canopy RT model to match the35
observed  reflectances R. Here, _ represents the discrepancy between observed and modeled36
data. Two sources are responsible for the mismatch, i.e. measurement error and model37
uncertainty. Measurement errors, an unavoidable component of the measurement process, arise38
due to sensor noise and data processing which is required to transform raw sensor data in39
physical quantities simulated by the model. Modeling error/uncertainty, also unavoidable, is40
generated by the assumptions made when modeling the physical interaction between photons and41
vegetation.42

43
Retrieving canopy biophysical parameters from measurements and RT models, can be44
approached by looking for a “match” between modeled and observed reflectances. This requires45
the solution of an inverse problem, where we are given the measurements and we are to46
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determine the parameters of the observed surface. Figure (1) provides a schematic of process.1
Solving the inversion problem is intimately connected with the nature of the RT model employed2
to describe the radiative field within and at the top of the canopy and requires a thorough3
understanding of the canopy RT model behavior as a function of the canopy parameters.4

5
In the following two sections, we review the fundamentals and state-of-the-art in both canopy6
RT modeling and the inversion techniques required to derive a RT-based retrieval algorithm.7

8
3. Physically-based first principle models for Radiative Transfer in Vegetation Canopies9

10
Physically-based, first-principle, models mathematically describe the physical processes behind11
the interaction between electromagnetic radiation and vegetation. They are critical to our12
understanding, both quantitatively and qualitatively, of the nature of the signal collected by13
satellite-based sensors. While a large variety of approaches have been taken (e.g. geometric-14
optical (Li and Strahler, 1992), radiosity (Lewis, 1999), Ray-tracing and Monte Carlo (Govaert15
and Verstraete,1998, North, 1996), here we focus on physical models that employ radiative16
transfer theory to describe the transport of photons in vegetation. The rationale behind17
considering primarily RT models is that most operational algorithms currently employed in18
estimating vegetation biophysical parameters (both at local and global scale), are based on their19
inversion (e.g. Baret et al. 2007). Since RT models describe the transport of photons in a host20
medium, they are generally derived by applying the principle of photons.  Canopies exhibit21
extremely rich and complex architectures and therefore several assumptions are generally22
required to establish mathematically tractable models. In the RT theory of vegetation canopies,23
the canopy is idealized as a medium filled with infinitesimally small planar elements, i.e. plates24
of negligible thickness oriented according to a specified probability law. All phytoelements other25
than green leaves (e.g. stems, barks) are ignored. Overall, vegetation canopies are viewed as a26
gas (or cloud) of non-dimensional planar scattering centers where the finite size of the leaves27
(the primary scatterers) is neglected. Therefore, the “turbid medium” assumption (Ross, 1981)28
describes the canopy as a collection of independent dimensionless scatterers uniformly29
distributed within the medium whose distribution and orientation called canopy architecture are30
described by leaf area density and leaf normal distribution functions.  Those functions convey31
information about the total amount of green leaf and the leaf orientation within the canopy.  In32
the remainder of the section, we provide a relatively brief overview of the classical canopy RT33
theory as developed by Ross (1981) and described by Shultis and Myneni (1989), Ross and34
Myneni (1991) and Knyazkhin et al. (2005). Subsequently, three examples of popular canopy RT35
models employed in deriving model-based inversion algorithms are reviewed.36

37
3.1 Fundamentals of canopy RT theory: Optical models and RT equations.38

39
Estimation of the radiative regime within vegetation canopies bounded by a reflecting soil40
requires the definition of 1) the architecture of individual plants and full canopy; and 2)41
definition of the optical properties of leaves (scatterers) and soil (as a boundary condition).42
Two wavelength-independent structural parameters define the architecture of canopy, i.e. the leaf43
area density and leaf normal orientation distribution functions. The leaf area density distribution44
function uL(r) is defined as the one-sided green leaf area per unit volume and it is a function of45
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the position inside the canopy r = (x,y,z). Integrating uL(r) along the entire canopy height H, we1
obtain the Leaf Area Index (LAI):2

3
(2)4

5
LAI is defined as the one-sided green leaf area per unit ground area and is a function of the6
horizontal position (x,y) within the observed canopy.7

8
If ΩL(_L,_L) is the upward normal to the leaf element (_L is the leaf inclination angle and _L is9
the leaf azimuthal angle), we define (1/2!)gL(ΩL) to be the probability density distribution of the10
leaf normal distribution with respect to the upper hemisphere (also known as Leaf Angle11
Distribution or LAD). The function gL is commonly described as a product of two independent12
functions, one of the inclination angle and the other of azimuthal angle only (Shultis an Myneni13
1989). Ample evidence indicates that the leaves are randomly oriented in the azimuthal angle14
whereas they follow five possible general distributions in the inclination angle, i.e. planophile,15
plagiophile, erectophile, extremophile and uniform (DeWit 1965, Bunnick 1978). For example,16
planophile indicates a class of leaves mainly distribute horizontally, while erectophile defines a17
class of leaves mainly distributed vertically.18
From an optical point of view, single-leaf reflectance and transmittance are required to define the19
so-called leaf scattering phase function (Ross 1981, Shultis and Myneni 1989, Myneni et. al.20
1990, Pinty and Verstrate 1997, Knyazkhin et al., 2005). Symbolically represented as _L,_(Ω’_Ω;21
ΩL), it models the probability that a photon travelling in direction Ω’ is scattered by a leaf with22
normal ΩL in direction Ω. The mathematical form of the leaf scattering phase function depends23
on the model used to describe the interaction between photons and leaves. The most popular24
model assumes the leaf to behave as a bi-lambertian diffuser (Shultis and Myneni 1989).25
Specular reflectance models are also available (Vanderbilt at. al. 1991).26

27
The conventional transport of photons in a participating medium requires the definition of28
extinction, absorption and scattering coefficients (Chandrasekhar 1950). Such coefficients are29
intimately connected with the physical processes occurring within the medium. In the case of30
vegetation canopy, photon absorption and scattering depend on the canopy structural parameters.31
The extinction coefficient is defined as the probability, per unit path length, of a photon32
travelling in direction Ω to encounter a leaf element. Mathematically,33

34
(3)35

36
The G(r,Ω) function is called geometric function (Ross, 1981, Shultis and Myneni 1989) and it is37
defined as the projection of a unit leaf area located at r onto a plane perpendicular to the38
direction of photons travel Ω.39

40
The differential scattering coefficient is defined as the probability density, per unit path length,41
that a photon, impinging on a leaf element of area density uL(r) in direction Ω’, is intercepted42
and therefore scattered in direction Ω. Mathematically:43

44
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1
(3)2

3
Here, (1/!)__(r,Ω’_Ω) is the area scattering phase function (Ross 1981, Shultis and Myneni4
1989). Scattering and absorption coefficients as well as single scattering albedo can be derived5
via manipulation of the scattering phase function (for further details see Knyazikhin et al. 2005).6
The radiative transfer equation can be formulated as a balance of photons in the appropriate7
phase space. A comprehensive and accurate description of the radiative regime within vegetation8
canopies requires the solution of a three-dimensional radiative transfer equation. Assuming that9
the canopy is contained within a finite volume VC (bounded on the top by the atmosphere ∂Vt, on10
the bottom by the reflecting soil ∂Vs and laterally by a generic surface ∂Vl), the steady-state11
radiative transfer equation is formulated as follows (Ross 1981, Shultis and Myneni 1989,12
Myneni et al. 1991, Knyazikhin et al. 1996, Knyazikhin et al. 2005):13

14
15

16
(4)17

18
Here I_(r,Ω) is the monocromatic (single wavelength) radiation intensity within the vegetation19
canopy. The canopy equation has been derived assuming no canopy emission and no20
polarization. Equation (4) is an integro-differential equation (also called the linear Boltzmann21
equation, Ganapol et. al. 1999). The equation must be augmented with appropriate boundary22
conditions (BCs). For any RT equation, the BCs represent a statement of the radiant energy23
entering the medium (Chandrasekhar 1950, Case and Zweifel 1967). In the case of vegetation24
canopies, photons enter the top of the canopy either via direct illumination of sun or diffuse25
illumination of the sky (i.e. photons scattered by the atmophere and riderected into the26
vegetation). Conversely, at the bottom of the canopy, photons re-enter the medium after being27
partially reflected by the soil. Any of these conditions can be expressed mathematically (for28
details see Shultis and Myneni 1989, Kranigk et al. 1994, Knyazikhin et al. 1997, Knyazikhin et29
al. 2005).30

31
The radiation intensity depends, for any given wavelength, on three spatial and two angular32
parameters. Because the leaf scatterers are found not to produce any frequency shifting, the33
radiative field inside canopies can be found independently at any wavelength. The full three-34
dimensional model can be simplified by assuming radiation fields to depend only on the vertical35
spatial variable (canopy infinite in the transverse plane) with two angles or one angle36
(azimuthally integrated intensity) variation. Moreover, in many applications, the canopy is37
assumed to be homogeneous. There is always a trade-off between the ability of the model to38
represent rich and complex heterogeneous canopy realizations and reduced mathematical39
complexity (Verstraete et. al. 1996)40

41
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Vegetation canopy RT models cannot be solved analytically and require numerical methods even1
in the simplified one-dimensional case.  Numerical techniques borrowed from the neutron2
transport field (Bell and Glasstone, 1970) are used to solve vegetation canopy equations.3
Discrete ordinate methods, where both the spatial and angular variables are discretized, have4
been applied for the 1-D (Myneni et. al. 1991a) and 3-D case (Myneni 1991b). Accurate and fast5
numerical solutions have been found applying Fn method (Ganapol and Myneni 1992, Ganapol et6
al. 1999) which approximate the solution using a singular integral formulation of the transport7
equation. However, only recently, this highly efficient and accurate algorithm was put on a solid8
theoretical framework (Furfaro and Ganapol 2007a).  More accurate solutions of the canopy RT9
equation have been obtained by applying the Converged SN method (Ganapol 2006) where both10
spatial and angular variables are discretized and coupled with acceleration techniques (e.g.11
Wynn-Epsilon, Sidi 2003) to push the order of accuracy above the sixth decimal place.12

13
Since the RT equation (4) is derived applying rigorous first principles, it satisfies energy14
conservation. However, the turbid medium approximation fails to model the retro-illumination15
effect observed commonly by satellite sensors. This effect is called “Hot-Spot” (Kuusk 1991b)16
and it is observed as a sharp peak of the radiance whenever a vegetation field is observed in the17
retro-solar direction. This is due to the finite size of the leaves and their ability to cast a shadow.18
This effect can be approximately modeled by augmenting the first scattered component of the19
radiation with parameters that empirically describes the peak. Under this conditions, the turbid20
medium assumption is violated and so is  energy conservation. Recently, Kellel et. al. (2008)21
proposed a new “multi hot-spot” model applied to a four-flux approximation of the canopy RT22
equation that is able to account for the effect of the finite size of leaves on multiple scattering23
maintaining energy conservation.24

25
3.2 Advancements in Vegetation Canopy Transport Theory26

27
Three-dimensional canopy RT models are the most comprehensive models to faithfully describe28
the full radiative field in vegetation. However, they are also computationally expensive.29
Conversely, one-dimensional models are simpler and require less computational resources, but30
fail to account for heterogeneity in canopies, and are therefore unable to model leaf clumping31
and other effects typical of the natural environment. Recently, stochastic transport in vegetation32
media has been considered as a possible representation of three-dimensional effect using a33
simpler one-dimensional model (Huang et al. 2008). Stochastic transport theory is not a new34
concept (Pomraming 1991, 1996) but it has been recently applied to the problem of describing35
photons transport in discontinuous canopies (Shabanov et . al. 2000). The idea is to provide a36
complete description of the radiative regime in 3-D canopies using a one-dimensional equation37
resulting from determining the mean radiant field coming from 3-D canopy realizations. This38
requires the determination of pair-correlation functions using Monte Carlo methods (Huang et al.39
2008). However, ignoring the full effect of 3-D canopy structures may result in underestimation40
of canopy transmittance and consequently overestimation of reflectance and absorptance.41
Stochastic RT equations seem to adequately account for the effect of canopy structure on42
relationships between LAI, LAD and reflected energy. While some of the results have been43
partially implemented for LAI and fAPAR  estimations from MODIS data (Shabanov et a. 2005),44
in the future, it is expected that canopy stochastic theory will provide a better representation of45
the radiative field resulting in more efficient and reliable retrieval algorithms.46
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1
3.3. Popular RT models employed in Canopy Biophysical Estimation Problem2

3
A wide range of radiative transfer models exist in the literature. Here, we review some of the4
most popular and widely employed in designing operational algorithms for canopy biophysical5
parameters estimation.6

7
One of the most widely used turbid medium RT models is the Scattering from Arbitrary Inclined8
Leaves (SAIL) model (Verhoef 1984, 1985). The model, which is an evolution of the Suits9
model (1972), is able to compute the Bidirectional Reflectance Distribution Function (BRDF) by10
approximating the monochromatic radiative intensity using a two-flux diffusive approximation to11
capture multiple scattering between vegetation elements. The multiplely scattered fluxes are12
assumed to be semi-isotropic. Over the past two decades, many modifications and improvements13
have been proposed including the Hot-Spot implementation (Kuusk 1985, 1991b), yielding the14
SAILH version (Verhoef 1998), and a  two-layer canopy structure to model the gradient color of15
leaves, yielding GeoSAIL (Verhoef and Bach 2003). In its latest version 4SAIL2 (Verhoef et al.16
2007) , the model has been upgraded to implement a four-stream diffusive approximation.17
Moreover, it has the ability to handle soils with anisotropic reflectance. SAIL is often coupled18
with the radiative transfer model PROSPECT (Jacquemoud and Baret 1990) specifically19
designed to describe the leaf optical properties as a function of leaf structure and biochemistry.20
PROSPECT is able to simulate leaf reflectance and transmittance from visible (0.4 microns) to21
the middle infrared (2.5 microns) as function of a parameter that account for the internal22
structure, chlorophyll concentration and leaf water depth. The combined model is called23
SAIL+PROSPECT (or sometimes PROSAIL): it has been used in many model inversion studies24
and it is the basis for constructing the operational algorithm to retrieve LAI, fAPAR and fraction25
of vegetation cover from the European VEGETATION sensor (Baret et . al. 2007, see also26
section 4.6).27

28
The coupled Leaf-Canopy RT model (Ganapol et. al. 1999) is the only model in the literature29
that describes the transport of photons both at leaf and canopy levels. Thus, LCM is able to30
compute the spectral and directional reflectance factor as function of leaf biochemistry, canopy31
architecture and soil reflectance. The modeling is executed by connecting two radiative transfer32
models. At leaf level, LEAFMOD (Ganapol et. al. 1998) describes the transport of photons33
within a leafy medium which is assumed to be homogeneous and isotropic. A conventional RT34
transfer equation is solved to determine the leaf optical properties (i.e. reflectance and35
transmittance). At canopy level, CANMOD (Ganapol et al. 1999, Ganapol and Myneni 1992)36
treats the vegetation as a one-dimensional turbid medium. It accepts inputs of the single-leaf37
optical properties from LEAFMOD as well as LAD, LAI, soil reflectance, sun and view angles38
to compute the spectral and directional reflectance at the top of the canopy. The leaf model can39
be calibrated using a combination of leaf experimental optical data and model inversion: usually,40
for a given leaf-type, LEAFMOD is inverted to compute scattering and absorption coefficients41
from the experimentally known reflectance and transmittance of a reference leaf. While42
scattering is kept unchanged as representative of the leaf structure, the retrieved absorption43
coefficient is disregarded and replaced by a new absorption coefficient constructed from the44
biochemistry of any desired leaf. Examples of canopy spectral and directional reflectance45
modeled using LCM is found in figure (2).46
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LCM has been successfully used in retrieving plantation coffee biophysical parameters from1
airborne remote sensing data for precision agriculture (Furfaro et al. 2005, 2007b) and it is also2
employed in a novel approach for global sensitivity analysis of canopy RT models and3
uncertainty analysis (Morris et. al. 2008).4

5
The Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al. 1996) is6
one of the most complex three-dimensional RT model available in the literature. It was designed7
to simulate the radiative transfer in three-dimensional, heterogeneous  ladscape scenes containing8
multiple elements such as grass, trees, shrubs, soil etc. The general approach to determine the9
full-scale radiant energy distribution of the scene is to divide the domain in rectangular cells10
containing single or a combination of elements. Discrete ordinates and kernel techniques have11
been employed to model the spectral and directional response of a specified observing sensor.12
DART has been recently improved (Gastellu-Etchegorry et al. 2004) to extend its domain of13
application and improve accuracy especially regarding simulations of single and multiple14
scattering. A current DART version is able to simulate the radiative transfer of the whole15
atmosphere-Earth system including models for sensor transfer functions. Such complex models16
require a large number of parameters and are computationally expensive. DART is generally17
used in forward modeling. A limited number of studies have been considered for inversion (e.g.18
Kimes et al. 2002).19

20
Other canopy RT models with different levels of complexity can be found in the literature (e.g.21
Markov Chain Reflectance Model, MCRM (Kuusk 1995, 2001), RayTran (Montecarlo22
simulation, Goevaert and Vestraete 1998)). Recently, the RAdiation transfer Model23
Intercomparison (RAMI) database (Pinty et. al. 2004, Widlowski et. al. 2007) proposed several24
protocols to compare vegetation canopy RT models. Such an effort should lead significant25
advancements in modeling and data interpretation leading to benefits for both the RT modelers26
and the user communities.27

28
29

4. Retrieval of biophysical parameters in vegetation canopies: Model Inversion techniques30
31

Inverting canopy RT models requires specific mathematical procedures to find the biophysical32
parameters that provide the best match between modeled and observed data. In order to invert a33
canopy RT model against a set of M remote sensing measurements to retrieve P vegetation34
parameters, Verstrate et.al. (1996) defined four basic conditions that must be satisfied, i.e. 1) the35
model must be mathematically “well behaved” and must have, as inputs, as less parameters as36
possible, 2) a cost function must be defined, 3) an inversion procedure that finds the absolute37
minimum (extremal) of the cost function must exist and 4) more measurements than model38
parameters must be collected by the sensors.39
Clearly, an inversion procedure must be defined to construct an operational algorithm for40
vegetation biophysical parameters retrieval. The traditional approach to solve the problem is to41
define an appropriate cost function (also called merit function or objective function) and search42
the parameter space for the solution(s) that minimize it. Importantly, the goal is not to look for a43
“true” solution but for an “approximate” solution to the system of equations described in44
equation (1) in the “best” possible fashion, i.e. solutions that minimize the selected cost function.45
Formally, equation (1) represents a system of non-linear equations. A necessary condition for the46
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system to be solvable is overdeterminacy (M > P, Verstrate et. al. 1996, Goel 1987). Moreover,1
for a successful implementation of inversion procedures, the RT model linking observations and2
canopy parameters must be described by the least amount of free parameters. Ideally, one wants3
to deal with models that have high “variance”, i.e. can represent or “explain” many observations4
with a very limited number of parameters. Indeed, if a dataset is extremely rich, we can always5
explain its richness (i.e. large data variance) by allowing models with large number of6
parameters. However, for these kind of models, the inversion algorithms must search higher-7
dimensional parameter spaces.  Thus, they tend to be unstable, computationally expensing and8
less reliable.9
Different inversion strategies have been proposed. We group the inversion algorithms in three10
categories: a) iterative optimization methods (e.g. Bicheron and Leroy, 1999; Goel and11
Thompson, 1984; Jacquemoud et al., 2000, Meroni et. al., 2004), b) Look-Up-Tables (LUTs)12
(e.g. Combal et al.,2002; Knyazikhin et al., 1998a,b; Weiss et al., 2000) and c) Neural Network13
(NN) inversion algorithms (Baret et. al., 1995; Weiss & Baret, 1999, Bacour et. al. 2006, Baret14
et. al. 2007). Each approach comes with advantages and disadvantages which are the topic of the15
remainder of the section. However, before delving into algorithm details, performances and16
validation, the ill-posed nature of the inversion procedure must be discussed.17

18
4.1 Inversion as Ill-posed problem: Regularization19

20
From a mathematical point of view, a problem can be solved if and only if it is well-posed (in the21
sense of Hardamand), i.e. a solution to the problem exists and it depends continuously from the22
data (Habermann, 2003). However, canopy inverse problems are notoriously ill-posed because a)23
different model parametrizations may yield identical spectra and b) the presence of model and24
measurement errors and uncertainties (Combal et. al. 2002, Atzeberger 2004). Baret and Guyot25
(1991) showed that two canopy realizations with different attributes (dense erectophile and26
sparse planophile) may yield identical spectral reflectance. Thus, one dataset of observations27
may yield two different solutions. Moreover, the presence of modeling and measurement errors28
may induce large variation in the solution, i.e.  the “approximate” solution found via the29
inversion algorithm may not be centered around the “true” solution, but dispersed in the30
parameter space (Atzberger 2004).  Jaquemoud and Baret (1993) used the SAILH+PROSPECT31
canopy reflectance model to verify the uniqueness of the solution, i.e. they studied inversion32
feasibility. What was found implied that the solution is not unique (e.g. multiple and different33
canopy configurations can be found that exhibit similar spectra). Therefore, the successful34
implementation of inversion algorithms requires the application of some regularization technique35
to obtain a stable and reliable solution.36
Regularization can be defined as a technique that aims at selecting only approximate solutions37
that are closed to the true solution. Combal et. al. (2002) recognized that a-priori information is38
an effective way to regularize ill-posed problems and conducted a study on using a-priori39
information to reduce the uncertainty in estimating canopy biophysical parameters. Using a-40
priori information means acquiring knowledge about the observed field using a) ancillary and41
field data (i.e. coming from other sensors), b) knowledge of the type of canopy architecture that42
defines the very specific class of RT models to be employed (e.g. turbid medium) and c)43
knowledge of typical distributions of the desired biophysical parameters. Combal et. al. (2000)44
adapted LUT, Neural Networks and Quasi-Newton inversion techniques to account for a-priori45
information.  The study allowed for simulated canopy reflectance data that were adapted to46
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include model uncertainty and measurement data. They found that while a-priori information1
always allows the stabilization of the inversion algorithm, LUT and Quasi-Newton algorithms2
were more sensitive to model uncertainty.  However, Neural Networks tend to perform worst3
when measurement errors are introduced.4
Atzberger (2004) contributed to the regularization problem by developing a novel approach that5
takes into account the neighboring radiometric information of the pixel of interest. The approach,6
called object signature used a set (“window”) of neighboring pixels to calculate 42 descriptive7
statistical properties that characterize the spectral covariace of the image object. The pixel8
signature and the image object signature were used on a Neural-Network-based inversion9
algorithm (trained using the SAILH+PROSPECT model) capable of retrieving simultaneously10
three parameters, i.e. LAI, chlorophyll and water content. The LAI parameter seemed to be the11
most affected by the object signature approach because information on intra-canopy variability12
of the Average Mean Angle (ALA) reduces the confounding effect between ALA and LAI (Baret13
and Guyot 1991).14

15
4.2 Inversion via Iterative Optimization Techniques: Fundamentals and State-of-the-art16

17
The solution of the canopy inverse problem using iterative optimization techniques can be stated18
as follows (Privette et. al. 1991, Privette et. al. 1996): Given a set of directional reflectance19
measurements, determine the set of independent model parameters that best fit measured20
directional and spectral reflectances. The best fit is determined by setting a proper cost function21
and a minimization procedure. Following Goel and Strebel (1983) that first defined the fitness of22
empirical data as “merit function”, the cost function (_2) can be expressed as following (Fang et.23
al. 2003):24

25

(5)26

27
Here Rij, Meas are the observed directional reflectances (for a given viewing geometry and sun28
angle), N is the number of viewing directions, B is the number of spectral bands, Wij are the29
weights. Importantly, Rij, Mod are the directional and spectral reflectances simulated by the30
canopy reflectance model as function of the particular canopy realization. The desired canopy31
parameters are generally determined by applying non-linear optimization techniques. The32
procedure is initiated by selecting an initial guess for the canopy parameters (initial selected33
canopy configuration). Subsequently, the canopy RT model is run to simulate the spectral and34
directional reflectances corresponding to the actual canopy realization. Since the initial guess35
most likely generates reflectances that are different than the observed data, the cost function is36
not minimal. Therefore, an iterative procedure is implemented to search for a solution where _237
is at its absolute minimum. A schematic of the overall procedure is illustrated in figure (3).38
Many factors influence the implementation of good inversion scheme to retrieve canopy39
biophysical parameters including the selection of a “good” canopy reflectance model (i.e. a40
model that strikes a balance between a good fit to measurements and numbers of parameters41
employed to fit the observed data (Jacquemoud et. al. 2000)), the selection of an appropriate cost42
function, the selection of the optimal number of directions and spectral bands. Moreover,43
regularization and sensitivity of the model parameters must be addressed.44

45
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Equation (5) represents the cost function that is commonly employed for canopy RT model1
inversion. However, improvements and adjustment can be done especially to address2
regularization. For example, a common cost function that is a variation of (5) has been employed3
by Meroni et. al. (2004):4

5

(6)6

7
The cost function in (6) is obtained by normalizing the weighted difference between modeled8
and observed reflectances by the absolute value of the measured reflectances. The advantage is9
to use a cost function that does not favor one spectral band with respect to others.10
Cost functions might be modified and constrained to include a-priori knowledge and help11
regularize the inversion procedure (for more details see Combal et. al. 2002 and Iaquinta et. al.12
1997).13

14
The cost function minimization must be done numerically. Clearly, the choice of the best15
optimization algorithm depends on the mathematical properties of the function to be minimized.16
The most well documented, and widely employed algorithms for iterative optimization is the17
Quasi-Newton method (Pinty et. al. 1990, Gobron et. al. 1997, Jacquemoud et. al. 2000). The18
method is well received by the portion of remote sensing community working with inversion19
algorithms because it requires only function evaluations (no derivative approximation is20
computed). Other numerical techniques have been applied including the conjugate direction set21
method (Kuusk 1991, Liang and Strahler 1993) and the downhill simplex method (Privette et. al.22
1994, Kimes et. al. 2002).  Most of the available optimization algorithms have been designed to23
find local minima. Therefore, one of the potential limitations is dictated by the possibility for  the24
selected algorithm to find multiple minima as opposed to a global absolute minimum. To avoid25
this scenario, Qui et. al. (1998) proposed running the optimization algorithms multiple times26
choosing random initial guesses and run a final optimization using as initial input the parameters27
that provide the best estimation in terms of cost function (Meroni et. al. 2004). These limitations28
motivated some research into applying global optimization techniques. Fang et al. (2003) applied29
a Genetic Algorithm Global Optimization technique to the problem of retrieving LAI from30
Landsat ETM+ and ground measurements. The technique scans all initial conditions and31
provides several possible solutions as global minimum candidates. The global character of the32
optimization approach avoids the inaccuracies introduced by more traditional local optimization33
techniques. Despite some initial interesting results in terms of LAI accuracy, more testing must34
be done to evaluate global performances.35
Traditional inversion techniques have been historically applied to the problem of retrieving36
canopy biophysical parameters more than 20 years ago (e.g. Goel and Strehbel 1989). They were37
functional in studying the feasibility of using canopy reflectance model as effective means for38
canopy parameters estimation (Jacquemound 1993, Privette et. al. 1994). Multiple studies were39
subsequently performed trying to improve the accuracy of the retrieval and exploring a large40
variety of numerical methods (Privette et. al. 1996, Qi et. al. 1998, Jacquemoud et. al. 2000,41
Meroni et. al. 2004). As shown above, for iterative optimization techniques, a stable and reliable42
inversion is not guaranteed since the searching algorithm might get stuck in a local minimum43
failing to reach a global minimum (Gong et. al. 1999, Kimes et. al. 2000).  Moreover, traditional44
inversion techniques tend to be computationally expensive. Indeed, inversion must be performed45
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on a per-pixel basis, which involves large amount of memory storage and computational time.1
The latter makes the estimation of canopy biophysical parameters unfeasible for large areas2
(Houborg et. al. 2007). LUT and NN techniques have been recently preferred to develop3
operational algorithms for canopy biophysical retrieval.4

5
4.3 Optimal Sampling6

7
The selection of the optimal bands and directions required for accurate retrieval of canopy8
biophysical parameters is an important subject and it is generally investigated during the9
inversion algorithm development phase. Verstrate et. al. (1996) investigates some issue regarding10
selection of directions and spectral bands from a very theoretical point of view. Firstly,11
successful inversion algorithms require a number of measurements higher than the number of12
parameters to be retrieved (see section 4.1). Secondly, an observational sampling strategy should13
be devised to provide the highest density of observations where the model is most variable with14
respect to the independent variable considered (i.e. angle of observation, wavelength). For15
example, biochemical parameters can be retrieved using spectral measurements while canopy16
structural parameters are mostly affected by directional measurements. Thus a sampling strategy17
should consider what is parameters are desired because if one parameter does not affect any18
measurement, its retrieval might be impossible (Verstrate et. al. 1996).  Weiss et al (2000)19
conducted a study with the objective of assessing the ability to estimate canopy biophysical20
variables (including LAI and chlorophyll content) using several directions and visible and Near-21
Infrared (NIR) bands. The inversion was performed using a LUT inversion technique and the22
SAIL+PROSPECT model. They showed that using a limited amount of radiometric information23
results in poor estimation of both LAI and chlorophyll. The strong correlation between LAI and24
ALA (Baret and Guyot, 1991) makes the retrieval inaccurate. Subsequently, the amount of25
radiometric information was increased independently both directionally and spectrally. It was26
shown that using increasing the number of spectral bands increases the accuracy of the27
estimation by a factor of 2. The optimal number of bands was found to be six. Conversely, the28
performance of the retrieval algorithm degraded (especially for LAI) when the overall available29
nine bands were used. This was attributed to an increase of sensor noise.  Subsequently, using30
the optimal six wavelengths, the best number of directions was found to be between four and31
seven, all located near the hot-spot or on the principal plane. Despite these initial results, the32
selection of an optimal sampling strategy is still an open research issue as a general criterion is33
not available. Meroni et. al. (2004) followed Weiss et. al. (2000) suggestion to devise the optimal34
bands for LAI retrieval in poplar canopies using the SAIL+PROSPECT model and iterative35
optimization techniques. Starting from three bands in the Red, NIR, and Shortwave Infrared36
(SWIR) they increased the number of bands. At each step, the inversion was performed and the37
optimal number of bands was selected to be the combination that reduced the Root Mean Square38
Error (RMSE) between retrieved LAI and measured LAI. Similarly, Schaefl et al. (2006) after39
verifying that two-band radiometric information is sufficient to retrieve LAI using a hybrid40
model called INFORM (Atzberger, 2000) and a Neural Network approach, selected the optimal41
number of bands. The best combination was found by evaluating the model inversion for all42
possible two-band combination available in the HyMap (Schaefl et. al. 2005) datset.43
Importantly, in the case of hyperspectral data, the selection of candidate bands is performed44
statistically (e.g. Principal Components Analysis (PCA, Schott 1997), to avoid employing highly45
correlated bands that might not yield additional information and prove to increase noise.46
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1
4.4 Model Sensitivity analysis: From local to global analysis2
Model sensitivity is a critical aspect of the inversion procedure. Given a set of parameters to be3
retrieved, the accuracy and the stability of the inversion algorithm depends on how sensitive is4
the model to canopy parameters variation. Ideally, the canopy RT model should have a moderate5
sensitivity to the parameter to be retrieved (Goel et. al. 1983). For example, if the model is not6
sensitive to the desired parameter, retrieval will be virtually impossible as the model will7
generate a very small reflectance variance for a large range of parameter variations. On the other8
extreme, if the model is too sensitive to the desired parameter, measurement errors will be9
propagate on the parameter retrieval resulting in a low accuracy of the estimation.10
In a broader sense, sensitivity analysis aims at determining how the variation in a model output11
can be apportioned among outputs, i.e. it determines how much variation is seen by the output12
for changing in each input (Santner et. al. 2003). The status of knowledge in sensitivity analysis13
for models relevant to remote sensing and geoscience was summarized by Saltelli (1999). One14
decade ago, the state-of-the-art approach involved what is currently known as “local sensitivity15
analysis” where the derivative of the model output with respect to the desired parameter (in this16
context they are called sensitivity indices) is computed around a fixed point in the parameter17
space. For example, Iaquinta et al (1997) computed the derivative of the albedo with respect to18
LAI as function of the single scattering albedo and soil reflectance, determining the regions19
where LAI is most sensitive, i.e. visible region for bright soil and NIR region for dark soil.20
However, very little progresses have been achieved in the past 10 years. Bacour et. al. (2002)21
discusses ideas involving the design of experiment but does not compute sensitivity indices.22
Boyer et. al. (2003) computes the sensitivity indices for canopy RT models but he employs a23
large numbers of model runs. In the past few months, Morris et. al. (2008) finally addressed the24
problem of “global sensitivity analysis” in canopy RT models. Global sensitivity analysis refers25
to a statistical technique which analyzes how the model output changes when all inputs vary26
continuously. A global sensitivity analysis involving the explicit computation of main effects27
(i.e. contribution of each canopy input parameter to the computed reflectance) and sensitivity28
indices (i.e. expected amounts by which the uncertainty in the output is reduced if the n-th29
canopy input true value were known) has been performed for the LCM RT model (Ganapol et.30
al. 1999). The input variations are determined by a probability distribution that defines the31
expected values for the input parameters. Gaussian Process (GP) approximation techniques32
(Rasmussen and Williams, 2006) have been applied to model the hemispherical reflectance in33
eight MODIS bands as function of the input parameters to speed up the computation of the main34
effects and sensitivity indices. While their results confirmed some of the previous analysis35
conducted using a more constrained local sensitivity analysis (e.g. LAI is more sensitive in the36
NIR and chlorophyll is more sensitive in the visible, Dungan and Ganapol, 2002), the statistical37
framework for global sensitivity analysis developed by Morris et al. (2008) will be useful for38
other endeavors such as model calibration, validation and inversion. Future efforts in this field39
are expected to yield a more accurate quantification of model uncertainties.40

41
4.5 Look-Up-Tables for Canopy RT Model Inversion: Fundamentals and State-of-the-art42

43
Look-Up-Tables (LUTs) inversion is one of the most intuitive and simplest available techniques44
for canopy biophysical parameters estimation. It has been the basis for devising operational45
algorithms for LAI and fAPAR estimation using MODIS and MISR measurements (Knyazkhyn46
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1998a,b, Weiss et. al. 2000). An overview of the steps required to devise a LUT retrieval1
algorithm is shown in figure (4). Consider again equation (1): It represents the functional2
relationship between the space of the canopy realizations and the space of the measurements. To3
discuss inversion via a LUT approach, we rephrase the inverse problem in the following way:4
given a specific geometric configuration (sun angle geometry, sensor view angle, wavelengths)5
and given the sensor measurements (spectral and directional reflectances), find, within the space6
of all possible canopy realizations, the canopy configurations such that a match between modeled7
and observed data is achieved. Assuming that the relationship in equation (1) can be effectively8
represented by at least a canopy RT model, the LUT method comprises four step: a) generate a9
table in the canopy input parameter space , i.e. the space of canopy realizations that contains the10
input variables of the RT model (sampling of the space); b) run the selected canopy RT model in11
direct mode to generate the correspondent reflectance table for all desired measurement12
configurations (i.e. all available directions and wavelengths). This table(s) is a static element of13
the algorithm and it is commonly called “Look-Up-Table”; c) Given a set of observed14
measurements acquired during the operational phase, for a given set bands and directions, the15
table is scanned to search for the element(s) that are the closest (according to a selected criterion)16
to the observed reflectances. The corresponding element in the canopy realization table is17
determined to be the solution of the problem; d) If more than one solution is found, a18
regularization approach is implemented to converge to one result.19
Few major issues must be addressed for a successful LUT-based inversion. Firstly, a criterion for20
selecting the closest “distance” must be defined. This is equivalent to define a cost function in21
the case of traditional optimization-based inversion techniques. A typical choice for the function22
is the so-called relative RMSE defined as follows (Weiss et. al. 2000):23

24
25

(7)26

27
As in the case of equation (6), this choice does not put emphasis on any particular band. Similar28
choices are made for the LAI/fAPAR MODIS/MISR retrieval algorithms (Knyazkhyn 1998a,b).29
Sampling the canopy realizations space is another important issue. Generally, the sampling is30
driven by what is known about the RT model input parameters distributions. The latter is31
intimately connected to the regularization problem, as a-priori knowledge helps to regularize the32
inversion algorithm (Combal et. al. 2002, see also section 4.1). A typical approach is to randomly33
draw the canopy realizations from the available probability distribution laws (Combal et. al.34
2002, Weiss et al. 2000, Knyazkhyn et. al. 1998a,b).35
Because of modeling errors and measurement uncertainties, the functional relationship between36
canopy parameters and measurements is not known exactly (see section 2). This means that37
because of modeling errors, a single canopy realization generates a modeled reflectance falling38
within a domain of radius _mod. Conversely, because of measurement uncertainties, the “true”39
reflected value falls within a domain of radius _meas. Clearly, the statement about solving the40
inverse problem should be modified: The admissible solutions are all canopy realizations such41
that the modeled reflectance falls within the modeling error and measurement uncertain domain42
(Kimes et. al. 2000). Generally, both model and measurement uncertainties are assumed known43
and lumped in a parameter _unc. For a set of N bidirectional reflectance measurements, the LUT44
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is searched and the canopy realizations satisfying the following equation (Zhang et. al. 2000, Tan1
et. al. 2000):2

3

(8)4

5
are treated as acceptable solutions to the inverse problem. Clearly, the LUT inverse algorithm6
does not find one solution, but a distribution of solutions over the canopy parameter space. The7
mean value is generally selected to be the estimated canopy parameter of interest.8
Next, the most notable LUT algorithm is described in details.9

10
4.5.1 LUT for LAI retrieval: the MODIS/MISR LAI/fAPAR operational algorithm11

12
The most known LUT-based canopy retrieval algorithm is the MODIS/MISR LAI and fAPAR13
operational algorithm. Knyazkhyn et. al. (1998a,b) present the theoretical justification behind the14
development of the retrieval scheme. The synergistic RT model-based algorithm has been15
designed to use of radiometric information from MODIS (single angle, up to 7 spectral bands)16
and MISR (nine angles, four spectral bands). In its basic form, the algorithm is based on a three-17
dimensional formulation of the fundamental RT processes (see section 3) to represent the18
functional relationship between vegetation canopy structural and optical characteristics and the19
directional (angular) and spectral signature observed by MODIS/MISR. The LUT approach is20
applied to determine the static elements that actively interact with the algorithm, i.e. the tables21
containing the modeled reflectance and the corresponding canopy realizations. As with any other22
inversion technique, the development of MODIS/MISR LAI/fAPAR algorithms had to deal with23
the ill-posed nature of the inversion. Patterns for spectral reflectance and transmittance of24
vegetation elements (optical properties), as well as patterns in the architecture of both individual25
trees and the entire canopy (structural parameters) have been identified and six possible biomes26
(grassland, shrubs, savannas, broadleaf forest, needle forest, broadleaf crops) have been27
introduced. Soil and understory spectral reflectance have been parametrized as function of the28
biome-type, i.e. selecting a specific reflectance pattern that can vary within the selected biome.29
This requires a-priori knowledge of the biome-type which is acquired using previously available30
biome maps (Biome Classification Map, Myneni et. al. 1997). The LUTs were generated as31
function of the specific biome by solving a three-dimensional canopy RT model. Such models32
are generally computationally expensive (Running et. al. 1998) and large LUTs require a large33
amount of memory for storage. An LUT optimization technique has been applied to reduce the34
number of simulations (i.e. reduce the size of the tables) and to make the overall algorithm model35
independent. The radiative transfer problem is divided in several independent subproblems using36
the general properties of the radiative transfer equation (especially its linearity). It is found that37
the radiation field inside a canopy can be decomposed into the sum of a radiation field generated38
by a canopy with black bottom surface  (“black soil problem”) and the radiation field generated39
by a canopy with a spectral-independent anisotropic source at the soil location (“S problem”).40
Using conservation of energy, i.e. the sum of canopy absorbance, reflectance and trasmittance41
must be equal to 1, the overall reflectance has been expressed as function of the canopy42
absorbance and transmittance of two independent problem and the effective soil reflectance.43
Furthermore, eigenvalue theory (Furfaro and Ganapol, 2007a, Knyazkhyn et. al. 2005) is44
employed to reduce the amount of spectral information required to find the radiative field: given45
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canopy absorptance and transmittance at a specified wavelength, one can determine the variables1
at any other wavelength (principle of spectral invariance, see Knyazikhin et. al. 2005). The2
synergistic inversion algorithm, acquires reflectance data, user-defined model and measurements3
uncertainties (Martonchik et. al. 1998), BCM (Myneni et. al. 1997) and try to solve retrieve4
LAI/fAPAR according to the procedure illustrated in 4.5. A back-up algorithm based on a simple5
relationship between LAI/fAPAR and NDVI is used in case the main LUT-based algorithm fails6
to reach convergence, i.e. to find acceptable solutions (Knyazkhyn et. al.  1998a,b)7
To evaluate the LAI/fAPAR MODIS/MISR algorithm performances as function of spatial8
resolution and uncertainties in surface reflectance and BMC, the algorithm has been prototyped9
using LASUR and LANDSAT data (MODIS, Tian et. al. 2000) and POLDER data (MISR,10
Zhang et. al. 2000) . Further algorithm refinement and studies on the impact of input11
uncertainties on the retrieval quality has been performed for both MODIS (Wang et. al. 2001)12
and MISR (Hu et al. 2003). It was found that misclassification between different biomes most13
negatively impact the quality of the retrieval. Also, by comparing retrieval between coarse and14
fine resolution data it was shown (Tian. et. al. 2000, Wang et al. 2001) that the algorithm15
critically depends on the spatial resolution, which requires evaluation of the data density16
distribution function. Zhang et. al. (2000) showed that multi-angle observation decreases the LAI17
dispersion and saturation effects, increasing the quality of LAI/FAPAR retrieval (see also Hu et18
al. 2003).19

20
Full-scale validation of the inverse algorithm for retrieval of LAI and other canopy biophysical21
variables is a critical step in assuring that the performances of the designed algorithm are22
adequate. Current validation activities of the MODIS/MISR algorithm products (mainly LAI) are23
performed following three basic steps, i.e. a) sampling of LAI and ancillary data from field24
campaign b) 2) generation of a fine resolution reference LAI map based on field data, and 3)25
comparison of MODIS/MISR LAI product with aggregated reference LAI map (Yang et. al.26
2006a, Hu et. al. 2007)). An international collaborative effort has been established to provide the27
required field campaigns for ground-based data collection of LAI (ground-truth, see Tan et. al.28
2005a, Huemmrich et. al. 2005). One of the major focuses of the investigative effort has been to29
determine a procedure where field sampling of LAI adequately represents its spatial distribution30
and cover the natural dynamic range within each major land cover type at the site. Generally,31
validation site have been segmented into spectrally homogeneous patches for sampling by32
utilizing a combination of high resolution imagery and existing land cover maps.  Thus a transfer33
function (TF) using both empirical and physically-based (RT) approaches is usually determined34
to link field-measured LAI and high resolution radiometric data. Such TF is functional in35
defining the high resolution LAI maps (assumed to be the reference LAI values) required for36
comparison with MODIS LAI products. The comparison should be performed by aggregating37
LAI reference map into MODIS-like resolution maps (Yang et. al. 2006a). Generally, a pixel-by-38
pixel comparison between MODIS and reference LAI values is not directly executed because a)39
the actual spatial location of the corresponding pixels in the two maps may not match because of40
geo-location and pixel-shift errors, b) the LAI algorithm is not designed to retrieve a41
deterministic LAI value, but instead generates a mean value from all possible solutions within a42
specified level of input satellite data and model uncertainties (Knyazikhin et. al. 1998a,b).43
Current practice involves the comparison at the patch scale (multi-scale approach).44
On-going validation activities for the MODIS/MISR LAI algorithm are an integral part of45
product assessment efforts that help diagnose algorithm deficiencies, thus resulting in46
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refined/revised algorithms (e.g. Hu et al. 2007) ,  which then are used to derive the next1
generation of products (e.g. improvement for Collection 4 products over the previous product2
generation, i.e. Collection 3). The MODIS land team has found that three key factors influence3
the accuracy of LAI retrievals: 1) uncertainties in input land cover (biome) data, 2) uncertainties4
in input surface reflectances, and 3) uncertainties from the model used to build the LUTs5
accompanying the algorithm (Yang et. al. 2006a, 2006b.). Uncertainty in the input lad cover has6
been addressed by replacing the old AVHRR-based land cover map with a 1-year MODIS-based7
map showing success in reducing the LAI over-estimation due to misclassification of grassland8
with broadleaf forest (Yang et. al. 2006b). Input data quality has been addressed by performing9
better atmospheric correction to remove the effect of cloud and aerosol (Tan et. al. 2005b).10
Model uncertainty has had the adverse result of causing the failure of the main retrieval11
algorithm and the consequent use of the back-up algorithm (low-quality products). It was shown12
that snow-covered vegetation areas tend to use the back-up algorithm. While some algorithm13
refinement has been applied to improve the main algorithm retrieval rate, the user is always14
strongly recommended to check the quality flag.15
In conclusion, the while multiple steps have been taken to improve the quality of the next16
generation LAI products, the uncertainty of the RT-based retrieval has not been fully addressed17
yet.18

19
4.6 Neural Network Inversion Techniques: Fundamentals and State-of-the-art20

21
Neural Networks are intelligent algorithms capable of learning complex non-linear functional22
relationship between input and output (Krasnopolsky and Chevallier, 2003). They are becoming23
a popular and computationally efficient technique for the interpretation of remotely sensed data24
as well as for the estimation of canopy biophysical parameters (Smith 1993, Baret et. al. 1995,25
Abuelgasim et. al. 1998, Kimes 1998, Gong et. al. 1999, Danson et. al. 2003, Atzberger 2004).26
The overall idea behind using neural networks for canopy biophysical retrieval is to implement27
intelligent algorithms to learn the inverse functional relationship between input data28
(measurements) and output data (parameters to be retrieved). A training database is generated via29
canopy RT model simulation of multiple canopy realizations. The training is generally30
performed by iteratively changing the weights and bias of the network to minimize the distance31
between the network current outputs and the training outputs.  Multilayer Perceptrons (MLP,32
Demuth and Beale, 1996) are generally employed to architect neural network algorithms (Kimes33
et. al. 1998).  MLP are comprised of elementary computational units arranged in layers.34
Generally, the network acquires the BRFs (measured at defined wavelengths according to the35
sensor configuration) and outputs the vegetation parameters Vi . For example, a three- layer36
network configuration is able to represent complex non linear functions in the following form:37

38
 (9)39

40
W1,1, W2,1 , b1, b2  are the synaptic weights and bias of the hidden layer and output layers and f141
and f2 are the neurons activation functions (Demuth and Beale 1996). Each layer is comprised of42
a fixed number of neurons defined by the network architect. Each neuron transforms the sum of43
the weighted (and biased) signals from the previous neurons according to a given transfer44
function and bias. The most popular transfer functions are logarithm-sigmoid and tangent-45
sigmoid functions (Demuth and Beale, 1996).  The weights and bias of both layers are the free46
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parameters that can change during the training process. Once the architecture (i.e. neurons1
configuration) is defined, a Mean Square Error (MSE), i.e. sum of the square errors between2
network outputs and training outputs, is set to be the cost function. MSE is function of the3
weights and bias which are changed during the learning processes via iterative optimization, e.g.4
backpropagation algorithm (Atkinson and Tatnall 1997).  No indication is given regarding the5
optimal number of layers and neurons included in the network architecture and generally, the6
best architecture is determined by trial and error (e. g. Bacour et. al. 2006). Data are pre-7
processed such that inputs are scaled to fall in the range [-1, 1] and both mean and standard8
deviations are normalized. The training set is divided in two portions, one of which is used for9
proper training and the other for testing the ability of the network to generalize (i.e. the ability to10
learn the functional relationship outside the training points) during the learning process (Demuth11
and Beale, 1996). Post-processing is performed to evaluate linear regression performances and12
data correlation between training and NN outputs. Figure (5) shows an example of neural13
network design, training and validation for simultaneous LAI and chlorophyll retrieval. The14
designed 5-layer NN has been trained using the coupled Leaf-Canopy RT model (Ganapol et. al.15
1999, see section 3.3)16

17
Many examples of NN design, training and validation are available in the literature to show how18
such model-based intelligent algorithms can improve the quality of canopy biophysical retrieval.19
Initially, the focus was on studying the feasibility of using neural networks to invert canopy RT20
models. For example, Smith (1993) used a MLP to invert a multiple scatter model in the optical21
region and predict LAI from few spectral bands. Baret et al. (1995) used a neural network to22
invert the combined SAIL+PROSPECT model simulating reflectances in sugar beet canopies.23
Fourty and Baret (1997) used a neural network to invert a coupled model (including leaf,24
atmospheric, canopy and soil models) simulating reflectances in the NIR-SWIR domain (up to 325
microns). More recently, many authors designed and validated neural network inversion26
algorithms that became the backbone of operational algorithms. Fang and Liang (2003b)27
designed, implemented and validated a neural network algorithm to retrieve LAI for LANDSAT28
7 ETM+ data. They trained a neural network on both canopy models and coupled canopy plus29
atmospheric models. The network employed band 3 and 4 as well as a combination of band 4 and30
NDVI. Comparisons with LAI ground measurements showed a correlation ranging from 0.8 to31
0.84 (R2). Interestingly, band 3 and 4 was recommended for top-of-the-canopy retrieval and band32
4 and NDVI for top-of-the-atmosphere retrieval. Schaefl and Atzberger (2006) used a neural33
network to invert a hybrid canopy reflectance modeled (INFORM, Atzberger 2000). The goal34
was to use hyperspectral data to retrieve LAI. A simple network (one neuron in the hidden layer)35
acquiring two bands (NIR and mid-IR) shows good agreement with LAI ground measurements36
(RMSE = 0.66 and R2= 0.74). Bacour et al. (2006) devised a neural network approach to37
operationally and simultaneously retrieve four canopy biophysical parameters (LAI, fAPAR,38
fraction of vegetation cover (fCov), the product of chlorophyll and LAI) from MERIS images39
(See section 5.4 for instrument details). Eleven spectral bands plus three angles defining the40
observation geometry were used as NN inputs. The training set was generated using41
SAIL+PROSPECT model coupled with a-priori information about canopy biophysical42
parameters (knowledge of parameters distribution laws). The training set was also corrupted with43
a 4% gaussian noise (zero bias) to introduce measurement uncertainties as estimated from44
MERIS. The retrieved variables have been compared with other products from MODIS and45
MERIS as well as validated against ground measurements. Good agreement with MODIS46
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products is shown. However, the NN tend to estimate lower LAI in broadleaf and needle forests.1
This is probably due to the inability of the SAIL model to account for LAI clumping exhibited2
by real canopies. Good agreement with ground data is shown especially for LAI (RMSE = 0.94).3
Baret et. al. (2007) describes the principles behind the design of a neural network algorithm to4
estimate LAI, fAPAR and fraction of vegetation cover from the VEGETATION sensor (see5
section 5.3 for instrument details). Using SAIL+PROSPECT, three independent neural network6
algorithms were designed and trained, one for each parameter to be retrieved. This contrasts with7
the approach followed by Bacour et. al. (2006), who implemented an algorithm for simultaneous8
parameter retrieval. Each NN acquires four inputs (the VEGETATION bands B2 (645 nm), B39
(835 nm) an SWIR (1165 nm) plus the sun angle) and provided one output (either LAI, fAPAR10
or fCov). Theoretical performance analysis showed an improvement in LAI (RMSE = 1.1),11
fAPAR (RMSE = 0.08) and fCov (RMSE = 0.06). LAI poorest performances are attributed to the12
sensitivity of LAI for larger values.13
Canopy RT model-based NN inversion techniques find application also in the field of precision14
agriculture. Indeed, a canopy RT model has been employed to design NNs for coffee ripeness15
prediction (Furfaro et. al. 2005, Furfaro et. al. 2007b). Three bands (two visible and one NIR)16
were acquired using a commercial camera (DuncanTech MS3100, Redlake Inc.) mounted on the17
high-altitude, solar-powered, Helios UAV (Herwitz et. al. 2002). The algorithm was trained on18
synthetic data simulated using the LCM RT model (Ganapol et. al. 1999). Since a-priori19
information were scarcely available, a regularization technique called “Domain Projection20
Technique” (DPT) was implemented to systematically project the reflectance in a region where21
physical solutions were available. A set of 27 neural networks was employed to find the best22
available solution. Correlation between predictions and yield data across all ripeness levels was23
0.78 with a mean absolute error of 11% (ranging from 1% to 26%).24

25
4.7 Performances and Comparison of LAI Operational Algorithms26

27
A comparison between various satellite data products is required to 1) assess the performances of28
various LAI retrieval algorithms and 2) assess the quality of the retrieval and the effect of29
uncertainties. Garrigues et. al. (2008) performed a detailed study to analyze the performances of30
four LAI satellite products including A) ECOCLIMAP climatology (Masson et al. 2003), B)31
GLOBCARBON (Deng et al., 2006), C) CYCLOPES (Baret. Al. 2007) and D) MODIS32
Collection 4 (Knyazikhin et. al. 1998a,b, Yang et. al. 2006a,b). The CYCLOPES and MODIS33
products (using SPOT/VEGETATION and TERRA/MODIS observations) use the retrieval34
algorithms described in section 4.6 and 4.5 respectively. ECOCLIMAP is based on a global land35
classification surface map (15 main surface-type) derived from a combination of several land36
maps. The main LAI retrieval algorithm is based on an empirical relationship between37
Normalized Difference Vegetation Index (NDVI) and LAI, where LAI is assigned via ground38
measurements for each type of land class. GLOBCARBON estimates LAI from a combination of39
SPOT/VEGETATION and ENVISAT/AATSR sensors. Its LAI retrieval algorithm (Deng et. al.40
2006), relies on land-cover specific, model-based relationships between LAI and a combination41
of bands (Red, NIR and SWIR). The relationships were derived using Four Scale canopy42
reflectance model (Chen and Leblanc, 2001). The LAI products of the proposed algorithms were43
compared on a common spatial (1/11.2 deg sampling) and temporal (one month) resolution using44
the BELMANIP network sites (Baret et. al. 2006). The intercomparison and uncertainty analysis45
were performed using 56 LAI reference maps obtained by ground measurements. Table 1 shows46
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the main features associated to the LAI products. Summarizing the results obtained by the1
Garrigues et. al. (2008) comparative study, the authors found that overall, CYCLOPES LAI2
estimates tend to be the closest to the reference map despite the inability of the algorithm to3
faithfully represent LAI clumping. Indeed, CYCLOPE retrieval algorithm comprises a neural4
network trained on SAIL (Baret et. al. 2007) which computes directional reflectances assuming5
homogeneous canopies. The inability of SAIL to represent LAI clumping is reflected on poor6
CYCLOPE LAI dynamic range (0-4) whereas all other algorithms seem to have adequate LAI7
range. CYCLOPES and MODIS perform very well on crops and grassland, while MODIS8
overestimates LAI over deciduous broadleaf and needle forests. All algorithms retrieve a9
continuous and smooth LAI on a global scale. However, on a continental scale, ECOCLIMAP10
poorly describes the surface heterogeneity and GLOBCARBON shows random LAI variations11
disconnected from the surface properties. CYCLOPES, MODIS and GLOBCARBON show12
consistent temporal profiles and realistic seasonal and inter-annual variations.13

14
15

5. Satellite-based Sensors for Vegetation Monitoring16
17

Since the launch of Landsat Multispectral Scanner System (MSS, 1972), many satellite-based18
sensors have been placed in orbit around Earth to collect the spectral and directional19
electromagnetic radiation reflected by its surface. Here, we provide an overview of the most20
important satellite-based sensors (the US-built MODIS and MISR, and the EU-built21
VEGETATION and MERIS) that have been employed to observe Earth vegetation and retrieve22
canopy biophysical parameters.23

24
25

5.1 MODIS26
27

One of the most important instruments ever deployed to observe vegetation is the Moderate28
Resolution Imaging Spectrometer or MODIS (Justice et. al. 1998, see figure 6, A,C). Two29
MODIS instruments are currently flying on-board Terra (Earth Observation System AM) and30
Aqua (Earth Observation System PM) spacecrafts. Both missions have been designed to acquire31
data that critically contribute to advance our understanding of Earth global dynamics and32
processes occurring on the surface, including land and oceans. Both Terra and Aqua have been33
placed on a 705-km near-polar, sun-synchronous orbit with descending node at 10:30am34
(equatorial crossing North-South time for Terra) or ascending node at 1:30pm (equatorial35
crossing South-North time for Aqua). The MODIS instrument observes Earth’s surface using 3636
bands ranging from 0.4 microns to 14.4 microns each with a very high radiometric sensitivity (1237
bits). MODIS has a swath size of 2330 km cross-track and 10 km along track (nadir). The spatial38
resolution is function of the band: two bands are imaged at 250 m, five bands at 500 m and 2939
bands at 1km spatial resolution. The main subcomponent of MODIS instrument is the Scan40
Mirror Assembly. The system uses a continuously rotating double-sided mirror scanning from -41
55 to +55 degrees. The two-mirror, off-axis telescope has been designed to direct the captured42
radiant energy to four refractive assemblies designed to cover visible, NIR, SWIR and Long43
Wave Infrared (LWIR). The instrument weights 228.7 kg, has a single-orbit average power of44
162.5 W and transmits data at 10.6 Mbps rate.45

46
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1
5.2 MISR2

3
The Multi-angle SpectroRadiometer (MISR, Diner et. al. 1998, see figure 6, B, D) was launched4
on board the first NASA Earth Observing System spacecraft (EOS-AM1), during late 1998. Built5
by Jet Propulsion Laboratory (JPL), MISR was designed to study Earth’s ecology and climate6
via multi-angle observations during the daylight. MISR provides global, radiometric, calibrated,7
georectified and spatially coregistered imagery sampling the reflected electromagnetic energy in8
nine viewing angles and four visible and NIR bands.  The rationale behind building a MISR-like9
instrument was to gather simultaneous directional measurements of the radiant field to10
characterize the anisotropy of the observed surface and determine its physical properties. The11
system is comprised of nine cameras, four of which point forward (Af, Bf, Cf, Df), other four12
point aftward (Aa, Ba, Ca, Da) and the ninth points in the nadir direction (An). The inclination13
angles with respect to the local vertical both in forward and aftward directions are 26.1, 45.6, 60,14
and 70.5 degrees. Such configuration enables the design of canopy RT-based algorithms that15
exploit directional information (e.g. MISR LAI/fAPAR retrieval algorithm, Knyazkhin et. al.16
1998b). The selection of the angle for the A-type cameras is driven by their use in stereoscopic17
image mapping of clouds (26.1 degrees provide the best base-to-height ratio for stereo work).18
The B cameras are set at 45.6 degrees to provide the highest sensitivity to aerosol properties. The19
C cameras angle (60 degree) minimizes the reflectance variation among different types of clouds.20
The D cameras provide the inclination angle (70.5 degrees) as high as possible compatible with21
practical limitations. The nine cameras observe the surface in a pushbroom mode with a swath22
width of about 360 km and length of 20,000 km/orbit. Using 1504-per-line CCDs, the cross-track23
spatial resolution of off-nadir cameras is about 275 km while the nadir camera is set to have a24
250m spatial resolution. This is called local mode (Earth observed at maximum resolution).25
Global mode implies observation at lower spatial resolution, averaging 4x4 or 2x2 pixels. The26
line repeating time is calibrated for the 705 km orbit and it is 40.8 milliseconds. Each of the27
MISR cameras, has four different colours, i.e. blues (446 nm), green (558 nm), red (672 nm) and28
NIR (867 nm).29
MISR has a high sensitivity to deal with a wide range of scene reflectance ranging from dark30
(0.02% for aerosol over water) and high reflectance contrast scenes (100% for clouds over31
oceans) without changing gain. A Signal-to-Noise Ratio (SNR) greater than 100 is required in32
dark scenes, while SNR greater than 300 is necessary to observe ocean colors. The instrument33
has been built with a SNR greater than 700 at full signal and highest spatial resolution. The34
absolute radiometric uncertainty was set to be less than 3%.35
Overall, with a mass of 149 kg and an average power of 83 W (113 W peak), MISR is very36
capable instruments that allow characterization of the surface and atmosphere, including37
vegetation, land, oceans, clouds and aerosol.38

39
5.3 VEGETATION40

41
The VEGETATION instruments family (Baret et. al. 2007) has been designed to monitor Earth42
surface at a near daily global coverage with a spatial resolution of about 1.1km. The European43
Space Agency (ESA) launched the first VEGETATION sensor aboard the Systeme Probatoire de44
l’Observation de la Terre (SPOT4) satellite in 1998 and VEGETATION 2 on board SPOT5 in45
2002 as part of an 11 years continuous observation program. Both instruments were placed on46
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Sunsyncronous polar orbit with a period of 26 days and 10:30am as equatorial crossing time. The1
orbit and the instrument angular aperture ensure a large swath (about 2200 km) for global2
coverage of the equatorial region (100% every two days from -35 to +35 deg of latitude). The3
instrument is a wide field of view sensor designed to employ a linear array of 1728 CCDs4
(working in pushbroom mode) for an overall spatial resolution of 1.15km/pixel.  The system is5
designed to acquire spectral information in four bands.  The two visible bands are designed to6
cover the range 440-475 nm for the Blue band and the range 620-690 nm for the Red band. The7
NIR band spans from 780 to 880nm and the SWIR band covers the range 1570-1690nm. The8
Red, NIR and SWIR bands have been selected to provide information about LAI, the absorption9
by the green component and water content. The Blue band adds some information about10
atmospheric components for atmospheric correction. A new optical design has been implemented11
that allow all images to be registered with an accuracy of 300 m. VEGETATION exhibits a12
radiometric resolution of 0.003 and an absolute radiometric uncertainty less than 5 %.13

14
5.4 MERIS15

16
The Medium Resolution Imaging Spectrometer (MERIS, e.g. Bacour et. al. 2006) is one of the17
European Space Agency (ESA)- built instruments on-board the ENVISAT Earth Observing18
Satellite (ENVISAT EOS). MERIS was initially conceived for ocean color observations but it19
has been recently used to observe land and atmospheric processes including vegetation (Baret et.20
al. 2006). Overall, the instrument is a very flexible tool extremely functional in helping21
determining features of Earth surface and atmosphere. Launched with ENVISAT EOS in 2002,22
MERIS is a pushbroom imaging spectrometer collecting visible and NIR radiation reflected by23
Earth surface during daytime. It swath is 1150 km and is commonly divided in 5 segments each24
covered by a dedicated camera with slightly overlapping field of view. Each camera is equipped25
with a two dimensional CCD array to provide both spectral and spatial information. To enable26
both global coverage and detailed regional imaging, two spatial resolutions have been27
established. Full resolution data are acquired at 300 m spatial resolution (mainly land and coastal28
zones). Reduced solution data are acquired at 1.2 km spatial resolution. Global Earth coverage is29
achieved within a three-day period. MERIS is capable of acquiring data in 15 bands spanning the30
390-1040nm range. Importantly, the instrument is adaptive as it can change band position, width31
and gain anytime during the nominal mission. The spectral width can be varied from 1.3 nm to32
30nm. Thus, MERIS enables multi-disciplinary data acquisitions and investigations. The33
radiometric performances vary depending on the observed surface or portion of the atmosphere.34
The instrument was designed to have a large dynamic range to image both low-level signal35
(dark) scenes and high-level signal (bright) scenes. MERIS most stringent radiometric36
requirement was to have enough radiometric sensitivity to discriminate between 30 classes of37
pigment concentrations commonly found in open ocean waters and spanning three orders of38
magnitude. The latter required designing the instrument with radiometric sensitivity of 2x10-439
noise equivalent spectral reflectance.40

41
6. Conclusions42
In this paper, an overview/review of the methods, techniques and problems encountered in43
retrieving canopy biophysical parameters is presented. While a variety of methods is available in44
the literature, we emphasized the connection between canopy RT models, their inversion and the45
development of operational algorithms designed to retrieve canopy parameters. The most46
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important operational algorithms are based on inverting physically-based models that are firmly1
grounded on canopy RT theory. We reviewed the fundamentals of photon transport in turbid2
media and show the basic equations that must be solved to successfully simulate spectral and3
directional reflectance as function of canopy structural and biochemical parameters. After4
introducing few well-known one- and three-dimensional RT models commonly used to predict5
the radiative regime within and top of the canopy, the inversion problem was discussed.6
Traditional iterative optimization, Look-Up-Tables and Neural Networks techniques were7
discussed from both a theoretical and practical point of view. Some of the common issues, such8
as sensitivity analysis, optimal sampling and regularization were highlighted and the methods9
currently available in the literature to mitigate the problems were reviewed. With special10
emphasis on the LAI retrieval process, the most common operational algorithms for estimating11
canopy biophysical parameters were analyzed and compared. Finally, an overview of the12
functional characteristic of two US-built satellite-based sensors (MODIS and MISR) and two13
EU-built sensors (VEGETATION and MERIS) was presented.14

15
As the science and technology of remote sensing progresses, some of the RT modeling and16
methods that represent the current state-of-the-art will be considered obsolete. However, our17
understanding of the physics underlying the interaction between photons and vegetation as well18
as our understanding of the basic nature of the inversion process, will guide scientists and19
engineers toward the quest for novel methodologies yielding more accurate, efficient and stable20
retrieval algorithms.21
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Figures and Tables1
2

Table1: A summary of the most commonly used operational retrieval algorithms for LAI3
estimation (table modeled after Garrigues et. al. 2008)4
Product Name Canopy RT model Inversion

Algorithm
LAI
Clumping

Uncertainties A-priori Info Reference

CYCLOPE-V3.1 SAIL+PROSPECT
(1-D)

NN No Model and
measurements at 4%

Probability
distribution

Baret et. al.
2007

MODIS-C4 3-D RTM (DISORD) LUTs Yes Measurements at 20% Values for six
biomes

Knyazikhin et.
al. 1998a

GLOBCARBON-V1 Model-based NDVI-
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1
2

Figure 1:  Diagram illustrating the canopy biophysical parameters retrieval problem in remote3
sensing of vegetation.4
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1
Figure 2: Examples of spectral and directional reflectance simulated by canopy RT models. A)2
Spectral behavior of the nadir reflectance as function of wavelength (400-2500 nm) for Willow3
canopies with variable LAI. The spectral behavior of the reflectance soil employed in this4
simulation is included. B) Polar plot for simulated directional reflectance exhibited by a maple5
canopy as function of view angle, (inclination and azimuth). Both simulations have been6
performed using the coupled Leaf-Canopy RT Model (LCM, Ganapol et. al. 1999)7
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Figure 3: Conceptual scheme illustrating the steps required to retrieve canopy biophysical3
parameters using traditional iterative optimization techniques.4
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2

Figure 4: Conceptual scheme illustrating the step required to implement and execute the retrieval3
of canopy biophysical parameters using Look-Up-Tables4
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1

2
3

Figure 5: Canopy biophysical parameters retrieval via neural networks and canopy RT models.4
The presented scheme illustrates the procedure. In this example, LCM (Ganapol et. al. 1999) has5
been used to generate the training set for simultaneous retrieval of LAI and chlorophyll from6
remote sensing observation. The NN approach required a set of 15840 training points7
(reflectance) corrupted with a 2.5% noise and 2% relative bias. Few design iterations were8
necessary to select the network architecture (4-12-8-5-2). The NN acquires four inputs (nadir9
reflectance at 450,550,670,790 nm), uses three hidden layers to process the signals and output10
two parameters (LAI and chlorophyll). Training and network validation are shown at the right11
bottom portion of the figure. The network performances have been compared against 18 data12
points representing ground truth (graphs at left portion of the figure). The system is shown to13
retrieve LAI with RMSE equal to 0.083 and chlorophyll with RMSE equal to 2.7528. The latter14
is shown to be the most sensitive to noise.15
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1
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Figure 6: Two examples of instruments for remote sensing of vegetation. A and B panels are two4
artistic images showing the satellite AQUA (EOS PM-1) while observing Earth. C and D panels5
show two images of MODIS and MISR instruments, respectively. The panel B shows MISR6
simultaneous observation of the ground in the nine nominal directions.7
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1.1 Introduction

Communicating the excitement generated by scientific research is a vital part of NASA’s mission.
Education and Public Outreach is a key agency priority, sufficiently important to be part of the
Strategic Management Framework in the 2006 NASA Strategic Plan [1, pp 29-30], where NASA’s
Education Initiatives are outlined. These include “Engage[ing] Americans in NASA’s mission”,
which becomes Education Outcome ED-3 [1, p43], “... promoteSTEM literacy and awareness of
NASA’s mission”.

To further these NASA goals we propose to produce a five minutevideo on uncertainty es-
timation, to be aired on local PBS educational affiliate KSCM-TV (3.5 million viewers) as well
as YouTube and other venues. The video will present uncertainty estimation in non-mathematical
terms in order to inform the viewer about how uncertainty is estimated, how it is used in scientific
decision making, and how optimal decisions change depending on the level of uncertainty. Exam-
ples will be given from the Earth Science domain of the parentproposal, estimating the uncertainty
of remote sensed data products from NASA’s Earth Observing satellites.

The proposed video,“Living in and Uncertain World” , will focus on how uncertain knowl-
edge can impact decision making, and will provide simple examples comprehensible to a high-
school educated person, before showing how the same ideas can be used to improve the data
products NASA produces from remote sensed imagery. The video will directly involve NASA
science, in a focused way, in terms of the explanation to a scientifically literate lay person of the
principles of uncertainty; how uncertainty often has a different meaning when used in the scientific
domain as opposed to general conversation; and how knowledge of the uncertainty associated with
a measurement can affect decisions. The video will also drawin more general NASA science,
through the use of NASA remote sensing data as examples of where the uncertainty modeling is
being applied. This is of great current public interest, as many of the debates about the causes and
effects of climate change rest on the uncertainty in the measurements and models.

To present these topics to the viewer, the video will integrate interviews conducted with experts
in the field of uncertainty with motion graphics and supporting video footage in order to enhance
visual impact and convey the concepts explained in the video. The inclusion of scientists allows
them to be seen as role models, and the participating scientists will be chosen to include women
and minority researchers, to represent the diverse spectrum of people working in SMD science.
The videos will also be produced with English and Spanish subtitles, enabling outreach to a more
diverse and often under-served community.

Audience
We know that there is a sizable segment of the American television viewing audience that is in-
terested in science and scientific topics by virtue of the fact that television stations air science
related programming (e.g., NOVA, Nature, etc.). This audience may have little formal science
background, but are intelligent, interested in science, and receptive to informal presentation of sci-
entific ideas. Through our collaboration with KCSM-TV, we will be able to reach this audience by
developing a short-format ‘filler’ video to be aired betweenregularly scheduled science program-
ming. For example, at the conclusion of an episode of NOVA, KCSM-TV will be able to air the
proposed video as a ‘lead in’ to its next regularly scheduledprogram, exposing an interested audi-
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ence to informational science programming based on NASA research. This serves two purposes:
1) to continue to provide high-quality, scientific content to demanding viewers that have already
tuned-in to see science-related programming and 2) to educate an audience interested in science
on advanced scientific concepts such as uncertainty and scientific decision making.

For KCSM-TV, having high-quality science content to ‘fill the gaps’ between regularly sched-
uled science programming is very important to maintaining viewer interest. As an educational PBS
affiliate, KCSM-TV strives to provide high-quality educational content to its viewers by airing well
known programs such as NOVA and Nature. However, each episode of these popular programs
typically runs 52-54 minutes, leaving a 6-8 minute window between programs that KCSM-TV
needs to fill with supplemental programming. KCSM-TV, like all PBS affiliates, is in need of
high-quality, informational content to fill this programming gap, and more specifically, they need
content that is generally aligned with the programming thatsurrounds it (eg, science filler for sci-
ence programming.) Subsequently, high-quality ‘filler’ content is in high demand, particularly
content that is scientific in nature. Currently, since thereis a dearth of scientific filler content;
KCSM-TV and many other PBS stations fill this gap with a hodge-podge of miscellaneous content
which in many cases is not even scientific in nature.

Access and Diversity
In addition to developing the video in English, a Spanish language version will also be produced.
This will further broaden access to the video, allowing the content to be seen by a traditionally
under-served demographic. As with the English version, theSpanish version will be made available
to KCSM-TV, and will also be distributed via YouTube as well as the USRA web site. Both English
and Spanish versions will be produced with closed-caption subtitles.

Leadership and Team
The science PI, Dr Robin Morris, will be responsible for the scientific content of the script for the
video, and will oversee the narration and the production, toensure scientific accuracy in the result.
The actual production will be contracted to The Casadonte Group, who have extensive experience
in public outreach, video production and content development. They have produced a number of
videos for USRA-RIACS that have already been broadcast on public television.

1.2 Methodology

“Living in an Uncertain World” will expose the viewer to the concepts of uncertainty and uncer-
tainty estimation, and how knowledge of uncertainty associated with a scientific measurement can
affect decisions.

To do this, we will use a series of interviews conducted with authorities in field of uncertainty
estimation, asking them such questions such as, What is uncertainty? How do you estimate it?
How does uncertainty affect decision making? Why can uncertainty estimation can be counter
intuitive? What is Bayes Theorem? and How is it used in uncertainty estimation? Interviewees
will be asked to answer these questions within the context ofNASA’s Earth Science research and
how uncertainty estimation is being applied to NASA remote sensing data. These concepts will
be further illustrated using motion graphics, b-roll, and publicly available data from NASA’s EOS
missions.
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The proposers have already produced a successful and well-received video about the Fermi
(GLAST) mission using this format [2].

Pipeline
The video will be broadcast on public television, and will facilitate viewers becoming aware of the
role uncertainty plays in scientific decision making and howit impacts decisions made. Seeing the
practical application of real scientific principles shouldhelp increase public awareness and overall
understanding of science, and will hopefully lead to further inquiry by the viewer. If deemed
appropriate, links to additional information on existing NASA web sites can be included in the
video, to make further exploration of this topic easier for viewers.

Additionally, including researchers, particularly womenand minority researchers, allows them
to be seen as role models and showcase the diverse spectrum ofpeople working in SMD science.

1.3 Impact

The proposal team has worked together in the past to produce successful videos like the one pro-
posed here. Most recently, the team produced a video on the NASA GLAST (now Fermi) mission
[2], which was released in June-July 2008. Since then, the video has and been aired nearly a dozen
times on KCSM-TV, filling such coveted time slots as the gap between NOVA and following pro-
grams, and has been viewed nearly 2,000 times on YouTube. In addition, portions of the video
have also been used by the GLAST team in various outreach and informal education activities.

In addition, Mr Casadonte of TCG has been involved in the production of a number of filler
pieces for NASA and USRA which have been aired over 200 times by KCSM-TV over the past
four years. These videos have won over a dozen Telly, Aurora,and Beacon awards for excellence
in video production. This video continues to builds upon this successful experience by adding
additional scientific content to an established and broad-reaching collaboration.

KCSM-TV will be the primary distribution channel for the videos, which will be aired multiple
times over a two to three year period, ensuring good re-use ofthe content. (It is not uncommon
for videos to be placed in the rotation schedule for several months, removed from the rotation for a
short period, and then placed back into rotation in order to appear ‘fresh’ and reach new viewers.)
Considering the current lack of high-quality scientific fillers, it is anticipated that these videos will
be in circulation for many years beyond the initial time period.

In addition to KCSM-TV, the video will be distributed on YouTube as well as USRA’s web
sites,www.usra.edu andwww.riacs.edu. The Spanish language version will be made avail-
able through these distribution methods as well.

By tapping into the airing opportunities available throughKCSM-TV, this video provides ac-
cess to 3.5 million potential viewers in the San Francisco Bay Area, and can serve as a demonstra-
tion of what can be accomplished via this distribution channel, potentially leading to a larger EPO
project in the future with national PBS coverage.
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1.4 Evaluation

To ensure that the video’s content is suitable for the audience, and that it clearly explains the
concepts we wish to communicate, we will work closely with our partners at KCSM-TV when
developing the storyboard, soliciting their feedback. We will present the storyboard to a small
number of people selected to be representative of the PBS audience. We will use the feedback
from these presentations to modify the storyboard to ensurethat the intended audience understands
the video’s content. This feedback will allow us to confirm that any points of confusion have been
eliminated and that the final video will be clear and informative.

A separate, small focus group will review and evaluate the first rough cut of the video. This
group, which will be different from the persons who reviewedthe storyboard, will provide any
additional feedback on the video, and from this feedback, final edits will be made.

While broad evaluation of the longitudinal impact of the video is not possible given the budget
constraints of this proposal, we can approximate the reach of the video through access to carriage
reports from KCSM-TV. A monthly report can be obtained from KCSM-TV to show when the
video aired on television, and the television viewership around the time the production was aired.
This will provide an indication of the size of the audience for the video, and hence its potential
impact.

1.5 Work Plan and Key Milestones

The following production timeline is offered based on past experience developing video projects
of the scope described in this proposal:

Weeks 1, 2 and 3: Storyboarding, Pre-production, and Scheduling During this phase, the
storyboard for the video will be fully developed and a pre-evaluation will be conducted. Based
on feedback from the pre-evaluation, we will revise the storyboard and schedule interviews. At
this time, the following people are anticipated as being ourmost likely interviewees: Professors
Raquel Prado and Bruno Sanso, University of California, Santa Cruz; Drs. Jennifer Dungan, Joe
Coughlan and Rama Nemani, NASA Ames.

Week 4: Production During this time we will conduct interviews with persons identified during
the pre-production phase of the project. Since all of the interviewees will be local, we will be able
to keep scheduling efficient and conduct the interviews in a short period of time.

Weeks 5 and 6: Post-ProductionDuring this time, the first rough-cut of the video will be pro-
duced. It will then be reviewed and screened to a small focus group to get feedback on how well.
Based on this feedback, revisions to the video will be made and the final video will be produced.
After the final, English language version of the video is complete a version with Spanish subtitles
added will be assembled. To ensure accurate scientific translation, we will work with Spanish-
speaking faculty in the statistics department at the University of California, Santa Cruz.

Milestone: Delivery completed video.
Delivery of completed video to KCSM-TV for local airing and national distribution; compression
of the videos and posting on YouTube and USRA web sites.
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2.1 List of Acronyms

GLAST Gamma-ray Large Area Space Telescope
PBS Public Broadcasting System
RIACS Research Institute for Advanced Computer Science
SMD Science Mission Directorate
STEM Science, Technology, Engineering, and Mathematics
TCG The Casadonte Group
UCSC University of California, Santa Cruz
USRA Universities’ Space Research Association
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